Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.46

Min(phi) over symmetries of the knot is: [-5,0,0,0,1,4,1,2,3,5,4,0,0,1,1,0,1,2,1,3,3]
Flat knots (up to 7 crossings) with same phi are :['6.46']
Arrow polynomial of the knot is: 4*K1*K2**2 - 4*K1*K2 + K1 - 2*K2**2 - 2*K2*K3 + K3 + K4 + 2
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.46']
Outer characteristic polynomial of the knot is: t^7+123t^5+78t^3+6t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.46']
2-strand cable arrow polynomial of the knot is: -144*K1**4 + 96*K1**3*K3*K4 + 320*K1**2*K2*K4**2 - 416*K1**2*K2*K4 + 984*K1**2*K2 - 208*K1**2*K3**2 - 800*K1**2*K4**2 - 1924*K1**2 - 512*K1*K2*K3*K4 + 992*K1*K2*K3 - 384*K1*K2*K4*K5 + 1840*K1*K3*K4 + 1144*K1*K4*K5 + 120*K1*K5*K6 - 32*K2**2*K4**4 + 64*K2**2*K4**3 - 560*K2**2*K4**2 + 1040*K2**2*K4 - 1634*K2**2 + 32*K2*K3*K4**2*K5 - 32*K2*K3*K4*K5 + 424*K2*K3*K5 + 32*K2*K4**3*K6 - 32*K2*K4**2*K6 + 600*K2*K4*K6 + 8*K2*K5*K7 - 16*K3**2*K4**2 - 1008*K3**2 + 16*K3*K4*K7 - 56*K4**4 - 32*K4**2*K5**2 - 8*K4**2*K6**2 + 32*K4**2*K8 - 1344*K4**2 + 8*K4*K5*K9 - 504*K5**2 - 174*K6**2 - 4*K7**2 - 2*K8**2 + 2072
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.46']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.19954', 'vk6.20099', 'vk6.21205', 'vk6.21378', 'vk6.26939', 'vk6.27168', 'vk6.28689', 'vk6.28853', 'vk6.38355', 'vk6.38578', 'vk6.40501', 'vk6.40768', 'vk6.45218', 'vk6.45465', 'vk6.47039', 'vk6.47203', 'vk6.56746', 'vk6.56916', 'vk6.57849', 'vk6.58051', 'vk6.61189', 'vk6.61451', 'vk6.62425', 'vk6.62604', 'vk6.66450', 'vk6.66620', 'vk6.67221', 'vk6.67408', 'vk6.69096', 'vk6.69264', 'vk6.69877', 'vk6.70003']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4O5O6U1U5U4U3U6U2
R3 orbit {'O1O2O3O4O5O6U1U5U4U3U6U2'}
R3 orbit length 1
Gauss code of -K O1O2O3O4O5O6U5U1U4U3U2U6
Gauss code of K* O1O2O3O4O5O6U1U6U4U3U2U5
Gauss code of -K* O1O2O3O4O5O6U2U5U4U3U1U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -5 1 0 0 0 4],[ 5 0 5 3 2 1 4],[-1 -5 0 -1 -1 -1 3],[ 0 -3 1 0 0 0 3],[ 0 -2 1 0 0 0 2],[ 0 -1 1 0 0 0 1],[-4 -4 -3 -3 -2 -1 0]]
Primitive based matrix [[ 0 4 1 0 0 0 -5],[-4 0 -3 -1 -2 -3 -4],[-1 3 0 -1 -1 -1 -5],[ 0 1 1 0 0 0 -1],[ 0 2 1 0 0 0 -2],[ 0 3 1 0 0 0 -3],[ 5 4 5 1 2 3 0]]
If based matrix primitive True
Phi of primitive based matrix [-4,-1,0,0,0,5,3,1,2,3,4,1,1,1,5,0,0,1,0,2,3]
Phi over symmetry [-5,0,0,0,1,4,1,2,3,5,4,0,0,1,1,0,1,2,1,3,3]
Phi of -K [-5,0,0,0,1,4,2,3,4,1,5,0,0,0,1,0,0,2,0,3,0]
Phi of K* [-4,-1,0,0,0,5,0,1,2,3,5,0,0,0,1,0,0,2,0,3,4]
Phi of -K* [-5,0,0,0,1,4,1,2,3,5,4,0,0,1,1,0,1,2,1,3,3]
Symmetry type of based matrix c
u-polynomial t^5-t^4-t
Normalized Jones-Krushkal polynomial z^2+6z+9
Enhanced Jones-Krushkal polynomial -4w^4z^2+5w^3z^2-12w^3z+18w^2z+9w
Inner characteristic polynomial t^6+81t^4+20t^2
Outer characteristic polynomial t^7+123t^5+78t^3+6t
Flat arrow polynomial 4*K1*K2**2 - 4*K1*K2 + K1 - 2*K2**2 - 2*K2*K3 + K3 + K4 + 2
2-strand cable arrow polynomial -144*K1**4 + 96*K1**3*K3*K4 + 320*K1**2*K2*K4**2 - 416*K1**2*K2*K4 + 984*K1**2*K2 - 208*K1**2*K3**2 - 800*K1**2*K4**2 - 1924*K1**2 - 512*K1*K2*K3*K4 + 992*K1*K2*K3 - 384*K1*K2*K4*K5 + 1840*K1*K3*K4 + 1144*K1*K4*K5 + 120*K1*K5*K6 - 32*K2**2*K4**4 + 64*K2**2*K4**3 - 560*K2**2*K4**2 + 1040*K2**2*K4 - 1634*K2**2 + 32*K2*K3*K4**2*K5 - 32*K2*K3*K4*K5 + 424*K2*K3*K5 + 32*K2*K4**3*K6 - 32*K2*K4**2*K6 + 600*K2*K4*K6 + 8*K2*K5*K7 - 16*K3**2*K4**2 - 1008*K3**2 + 16*K3*K4*K7 - 56*K4**4 - 32*K4**2*K5**2 - 8*K4**2*K6**2 + 32*K4**2*K8 - 1344*K4**2 + 8*K4*K5*K9 - 504*K5**2 - 174*K6**2 - 4*K7**2 - 2*K8**2 + 2072
Genus of based matrix 2
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{1, 6}, {5}, {4}, {3}, {2}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{2, 6}, {5}, {4}, {3}, {1}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {3, 5}, {4}, {2}, {1}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {3, 4}, {1, 2}], [{6}, {5}, {4}, {3}, {1, 2}]]
If K is slice False
Contact