Gauss code |
O1O2O3O4O5U6U4O6U1U3U5U2 |
R3 orbit |
{'O1O2O3O4O5U6U4O6U1U3U5U2'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5U4U1U3U5O6U2U6 |
Gauss code of K* |
O1O2O3O4U1U4U2U5U3O6O5U6 |
Gauss code of -K* |
O1O2O3O4U5O6O5U2U6U3U1U4 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -3 1 0 0 3 -1],[ 3 0 3 1 1 3 2],[-1 -3 0 -1 0 2 -2],[ 0 -1 1 0 1 2 -1],[ 0 -1 0 -1 0 0 0],[-3 -3 -2 -2 0 0 -3],[ 1 -2 2 1 0 3 0]] |
Primitive based matrix |
[[ 0 3 1 0 0 -1 -3],[-3 0 -2 0 -2 -3 -3],[-1 2 0 0 -1 -2 -3],[ 0 0 0 0 -1 0 -1],[ 0 2 1 1 0 -1 -1],[ 1 3 2 0 1 0 -2],[ 3 3 3 1 1 2 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,-1,0,0,1,3,2,0,2,3,3,0,1,2,3,1,0,1,1,1,2] |
Phi over symmetry |
[-3,-1,0,0,1,3,0,1,3,1,3,0,1,0,1,1,0,2,1,2,0] |
Phi of -K |
[-3,-1,0,0,1,3,0,2,2,1,3,0,1,0,1,-1,0,1,1,3,0] |
Phi of K* |
[-3,-1,0,0,1,3,0,1,3,1,3,0,1,0,1,1,0,2,1,2,0] |
Phi of -K* |
[-3,-1,0,0,1,3,2,1,1,3,3,0,1,2,3,-1,0,0,1,2,2] |
Symmetry type of based matrix |
c |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
3z^2+23z+35 |
Enhanced Jones-Krushkal polynomial |
3w^3z^2+23w^2z+35w |
Inner characteristic polynomial |
t^6+48t^4+76t^2+4 |
Outer characteristic polynomial |
t^7+68t^5+128t^3+10t |
Flat arrow polynomial |
8*K1**3 + 4*K1**2*K2 - 10*K1**2 - 8*K1*K2 - 2*K1*K3 - 2*K1 - 2*K2**2 + 4*K2 + 2*K3 + K4 + 6 |
2-strand cable arrow polynomial |
-128*K1**6 + 864*K1**4*K2 - 3776*K1**4 + 608*K1**3*K2*K3 + 192*K1**3*K3*K4 - 864*K1**3*K3 - 128*K1**2*K2**4 + 384*K1**2*K2**3 + 192*K1**2*K2**2*K4 - 5712*K1**2*K2**2 + 128*K1**2*K2*K3**2 + 64*K1**2*K2*K4**2 - 1088*K1**2*K2*K4 + 10352*K1**2*K2 - 1920*K1**2*K3**2 - 64*K1**2*K3*K5 - 352*K1**2*K4**2 - 6712*K1**2 + 704*K1*K2**3*K3 + 160*K1*K2**2*K3*K4 - 1344*K1*K2**2*K3 + 32*K1*K2**2*K4*K5 - 448*K1*K2**2*K5 + 192*K1*K2*K3**3 + 32*K1*K2*K3*K4**2 - 576*K1*K2*K3*K4 - 64*K1*K2*K3*K6 + 9944*K1*K2*K3 - 128*K1*K2*K4*K5 - 32*K1*K2*K4*K7 + 64*K1*K3**3*K4 - 32*K1*K3**2*K5 - 32*K1*K3*K4*K6 + 2800*K1*K3*K4 + 440*K1*K4*K5 + 16*K1*K5*K6 - 64*K2**6 - 64*K2**4*K3**2 - 32*K2**4*K4**2 + 160*K2**4*K4 - 1272*K2**4 + 64*K2**3*K3*K5 + 32*K2**3*K4*K6 - 32*K2**3*K6 + 64*K2**2*K3**2*K4 - 1200*K2**2*K3**2 - 32*K2**2*K3*K7 + 32*K2**2*K4**3 - 336*K2**2*K4**2 - 32*K2**2*K4*K8 + 2056*K2**2*K4 - 64*K2**2*K5**2 - 8*K2**2*K6**2 - 5548*K2**2 - 160*K2*K3**2*K4 + 992*K2*K3*K5 + 272*K2*K4*K6 + 40*K2*K5*K7 + 8*K2*K6*K8 - 224*K3**4 - 80*K3**2*K4**2 + 176*K3**2*K6 - 3100*K3**2 + 40*K3*K4*K7 - 8*K4**4 + 8*K4**2*K8 - 1128*K4**2 - 212*K5**2 - 52*K6**2 - 8*K7**2 - 2*K8**2 + 5944 |
Genus of based matrix |
0 |
Fillings of based matrix |
[[{2, 6}, {1, 5}, {3, 4}]] |
If K is slice |
False |