Gauss code |
O1O2O3O4O5U1U2U5O6U3U4U6 |
R3 orbit |
{'O1O2O3O4O5U1U2U5O6U3U4U6'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5U6U2U3O6U1U4U5 |
Gauss code of K* |
O1O2O3U4O5O6O4U1U2U5U6U3 |
Gauss code of -K* |
O1O2O3U1O4O5O6U4U2U3U5U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
True |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -4 -2 0 2 2 2],[ 4 0 1 3 4 2 2],[ 2 -1 0 2 3 1 2],[ 0 -3 -2 0 1 0 2],[-2 -4 -3 -1 0 0 1],[-2 -2 -1 0 0 0 0],[-2 -2 -2 -2 -1 0 0]] |
Primitive based matrix |
[[ 0 2 2 2 0 -2 -4],[-2 0 1 0 -1 -3 -4],[-2 -1 0 0 -2 -2 -2],[-2 0 0 0 0 -1 -2],[ 0 1 2 0 0 -2 -3],[ 2 3 2 1 2 0 -1],[ 4 4 2 2 3 1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-2,-2,0,2,4,-1,0,1,3,4,0,2,2,2,0,1,2,2,3,1] |
Phi over symmetry |
[-4,-2,0,2,2,2,1,1,2,4,4,0,1,2,3,1,0,2,-1,0,0] |
Phi of -K |
[-4,-2,0,2,2,2,1,1,2,4,4,0,1,2,3,1,0,2,-1,0,0] |
Phi of K* |
[-2,-2,-2,0,2,4,-1,0,0,2,4,0,1,1,2,2,3,4,0,1,1] |
Phi of -K* |
[-4,-2,0,2,2,2,1,3,2,2,4,2,1,2,3,0,2,1,0,0,-1] |
Symmetry type of based matrix |
c |
u-polynomial |
t^4-2t^2 |
Normalized Jones-Krushkal polynomial |
4z^3+19z^2+28z+13 |
Enhanced Jones-Krushkal polynomial |
4w^4z^3+19w^3z^2+28w^2z+13 |
Inner characteristic polynomial |
t^6+58t^4+53t^2+1 |
Outer characteristic polynomial |
t^7+90t^5+197t^3+25t |
Flat arrow polynomial |
-8*K1**4 + 4*K1**2*K2 + 4*K1**2 + 1 |
2-strand cable arrow polynomial |
-128*K2**8 + 256*K2**6*K4 - 1856*K2**6 - 288*K2**4*K4**2 + 2848*K2**4*K4 - 5376*K2**4 + 96*K2**3*K4*K6 - 352*K2**3*K6 - 816*K2**2*K4**2 + 3568*K2**2*K4 + 1936*K2**2 + 112*K2*K4*K6 - 528*K4**2 + 526 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {4, 5}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {4, 5}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {2, 4}, {1, 3}]] |
If K is slice |
False |