Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.482

Min(phi) over symmetries of the knot is: [-4,-1,0,1,2,2,1,4,2,2,3,2,1,1,2,0,2,2,1,1,-1]
Flat knots (up to 7 crossings) with same phi are :['6.482']
Arrow polynomial of the knot is: 4*K1**3 + 4*K1**2*K2 - 6*K1**2 - 4*K1*K2 - 2*K1*K3 - K1 + 2*K2 + K3 + 3
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.94', '6.482', '6.492']
Outer characteristic polynomial of the knot is: t^7+81t^5+96t^3+13t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.482']
2-strand cable arrow polynomial of the knot is: -192*K1**4*K2**2 + 544*K1**4*K2 - 624*K1**4 + 128*K1**3*K2**3*K3 - 384*K1**3*K2**2*K3 + 544*K1**3*K2*K3 - 512*K1**3*K3 - 256*K1**2*K2**4 - 128*K1**2*K2**3*K4 + 2176*K1**2*K2**3 - 192*K1**2*K2**2*K3**2 + 128*K1**2*K2**2*K4 - 7088*K1**2*K2**2 + 192*K1**2*K2*K3**2 - 576*K1**2*K2*K4 + 6512*K1**2*K2 - 272*K1**2*K3**2 - 4936*K1**2 - 128*K1*K2**4*K3 + 2336*K1*K2**3*K3 + 448*K1*K2**2*K3*K4 - 2048*K1*K2**2*K3 + 128*K1*K2**2*K4*K5 - 416*K1*K2**2*K5 - 416*K1*K2*K3*K4 + 7400*K1*K2*K3 - 96*K1*K2*K4*K5 + 856*K1*K3*K4 + 88*K1*K4*K5 + 24*K1*K5*K6 - 32*K2**6 - 128*K2**4*K3**2 - 32*K2**4*K4**2 + 352*K2**4*K4 - 3224*K2**4 + 256*K2**3*K3*K5 + 32*K2**3*K4*K6 - 64*K2**3*K6 - 1872*K2**2*K3**2 - 32*K2**2*K3*K7 - 416*K2**2*K4**2 + 2384*K2**2*K4 - 160*K2**2*K5**2 - 8*K2**2*K6**2 - 2330*K2**2 + 960*K2*K3*K5 + 128*K2*K4*K6 + 16*K2*K5*K7 - 2124*K3**2 - 544*K4**2 - 156*K5**2 - 22*K6**2 + 3774
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.482']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.72569', 'vk6.72572', 'vk6.72672', 'vk6.72677', 'vk6.72985', 'vk6.72993', 'vk6.73144', 'vk6.73149', 'vk6.74209', 'vk6.74214', 'vk6.74841', 'vk6.74845', 'vk6.76400', 'vk6.76407', 'vk6.76891', 'vk6.77856', 'vk6.77887', 'vk6.77895', 'vk6.78000', 'vk6.79251', 'vk6.79256', 'vk6.79736', 'vk6.80746', 'vk6.80748', 'vk6.81149', 'vk6.81152', 'vk6.82310', 'vk6.83984', 'vk6.86359', 'vk6.87274', 'vk6.88229', 'vk6.88230']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4O5U1U3U4O6U5U2U6
R3 orbit {'O1O2O3O4O5U1U3U4O6U5U2U6'}
R3 orbit length 1
Gauss code of -K O1O2O3O4O5U6U4U1O6U2U3U5
Gauss code of K* O1O2O3U4O5O6O4U1U6U2U3U5
Gauss code of -K* O1O2O3U1O4O5O6U3U4U5U2U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -4 0 -1 1 2 2],[ 4 0 4 1 2 3 2],[ 0 -4 0 -2 0 2 2],[ 1 -1 2 0 1 2 1],[-1 -2 0 -1 0 1 1],[-2 -3 -2 -2 -1 0 1],[-2 -2 -2 -1 -1 -1 0]]
Primitive based matrix [[ 0 2 2 1 0 -1 -4],[-2 0 1 -1 -2 -2 -3],[-2 -1 0 -1 -2 -1 -2],[-1 1 1 0 0 -1 -2],[ 0 2 2 0 0 -2 -4],[ 1 2 1 1 2 0 -1],[ 4 3 2 2 4 1 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-2,-1,0,1,4,-1,1,2,2,3,1,2,1,2,0,1,2,2,4,1]
Phi over symmetry [-4,-1,0,1,2,2,1,4,2,2,3,2,1,1,2,0,2,2,1,1,-1]
Phi of -K [-4,-1,0,1,2,2,2,0,3,3,4,-1,1,1,2,1,0,0,0,0,-1]
Phi of K* [-2,-2,-1,0,1,4,-1,0,0,2,4,0,0,1,3,1,1,3,-1,0,2]
Phi of -K* [-4,-1,0,1,2,2,1,4,2,2,3,2,1,1,2,0,2,2,1,1,-1]
Symmetry type of based matrix c
u-polynomial t^4-2t^2
Normalized Jones-Krushkal polynomial 8z^2+29z+27
Enhanced Jones-Krushkal polynomial 8w^3z^2+29w^2z+27w
Inner characteristic polynomial t^6+55t^4+14t^2
Outer characteristic polynomial t^7+81t^5+96t^3+13t
Flat arrow polynomial 4*K1**3 + 4*K1**2*K2 - 6*K1**2 - 4*K1*K2 - 2*K1*K3 - K1 + 2*K2 + K3 + 3
2-strand cable arrow polynomial -192*K1**4*K2**2 + 544*K1**4*K2 - 624*K1**4 + 128*K1**3*K2**3*K3 - 384*K1**3*K2**2*K3 + 544*K1**3*K2*K3 - 512*K1**3*K3 - 256*K1**2*K2**4 - 128*K1**2*K2**3*K4 + 2176*K1**2*K2**3 - 192*K1**2*K2**2*K3**2 + 128*K1**2*K2**2*K4 - 7088*K1**2*K2**2 + 192*K1**2*K2*K3**2 - 576*K1**2*K2*K4 + 6512*K1**2*K2 - 272*K1**2*K3**2 - 4936*K1**2 - 128*K1*K2**4*K3 + 2336*K1*K2**3*K3 + 448*K1*K2**2*K3*K4 - 2048*K1*K2**2*K3 + 128*K1*K2**2*K4*K5 - 416*K1*K2**2*K5 - 416*K1*K2*K3*K4 + 7400*K1*K2*K3 - 96*K1*K2*K4*K5 + 856*K1*K3*K4 + 88*K1*K4*K5 + 24*K1*K5*K6 - 32*K2**6 - 128*K2**4*K3**2 - 32*K2**4*K4**2 + 352*K2**4*K4 - 3224*K2**4 + 256*K2**3*K3*K5 + 32*K2**3*K4*K6 - 64*K2**3*K6 - 1872*K2**2*K3**2 - 32*K2**2*K3*K7 - 416*K2**2*K4**2 + 2384*K2**2*K4 - 160*K2**2*K5**2 - 8*K2**2*K6**2 - 2330*K2**2 + 960*K2*K3*K5 + 128*K2*K4*K6 + 16*K2*K5*K7 - 2124*K3**2 - 544*K4**2 - 156*K5**2 - 22*K6**2 + 3774
Genus of based matrix 2
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{1, 6}, {5}, {4}, {3}, {2}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {3, 5}, {4}, {2}, {1}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {3, 4}, {1, 2}]]
If K is slice False
Contact