Gauss code |
O1O2O3O4O5U1U3U5O6U4U2U6 |
R3 orbit |
{'O1O2O3O4O5U1U3U5O6U4U2U6'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5U6U4U2O6U1U3U5 |
Gauss code of K* |
O1O2O3U4O5O6O4U1U6U2U5U3 |
Gauss code of -K* |
O1O2O3U1O4O5O6U4U3U5U2U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
2 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -4 0 -1 1 2 2],[ 4 0 4 1 3 2 2],[ 0 -4 0 -2 1 1 2],[ 1 -1 2 0 2 1 1],[-1 -3 -1 -2 0 0 1],[-2 -2 -1 -1 0 0 0],[-2 -2 -2 -1 -1 0 0]] |
Primitive based matrix |
[[ 0 2 2 1 0 -1 -4],[-2 0 0 0 -1 -1 -2],[-2 0 0 -1 -2 -1 -2],[-1 0 1 0 -1 -2 -3],[ 0 1 2 1 0 -2 -4],[ 1 1 1 2 2 0 -1],[ 4 2 2 3 4 1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-2,-1,0,1,4,0,0,1,1,2,1,2,1,2,1,2,3,2,4,1] |
Phi over symmetry |
[-4,-1,0,1,2,2,1,4,3,2,2,2,2,1,1,1,1,2,0,1,0] |
Phi of -K |
[-4,-1,0,1,2,2,2,0,2,4,4,-1,0,2,2,0,0,1,0,1,0] |
Phi of K* |
[-2,-2,-1,0,1,4,0,0,0,2,4,1,1,2,4,0,0,2,-1,0,2] |
Phi of -K* |
[-4,-1,0,1,2,2,1,4,3,2,2,2,2,1,1,1,1,2,0,1,0] |
Symmetry type of based matrix |
c |
u-polynomial |
t^4-2t^2 |
Normalized Jones-Krushkal polynomial |
12z+25 |
Enhanced Jones-Krushkal polynomial |
-4w^3z+16w^2z+25w |
Inner characteristic polynomial |
t^6+51t^4+25t^2 |
Outer characteristic polynomial |
t^7+77t^5+125t^3 |
Flat arrow polynomial |
-2*K1**2 - 2*K1*K3 + 2*K2 + K4 + 2 |
2-strand cable arrow polynomial |
-320*K1**4 - 352*K1**2*K2**2 + 880*K1**2*K2 - 240*K1**2*K3**2 - 1504*K1**2 + 32*K1*K2*K3**3 + 2224*K1*K2*K3 + 472*K1*K3*K4 + 24*K1*K4*K5 + 40*K1*K5*K6 - 88*K2**4 - 256*K2**2*K3**2 + 112*K2**2*K4 - 8*K2**2*K6**2 - 1480*K2**2 + 624*K2*K3*K5 + 40*K2*K4*K6 + 16*K2*K6*K8 - 304*K3**4 + 280*K3**2*K6 - 1328*K3**2 + 24*K3*K5*K8 - 244*K4**2 - 296*K5**2 - 112*K6**2 - 18*K8**2 + 1780 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {4, 5}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{5, 6}, {3, 4}, {1, 2}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {4, 5}, {2, 3}, {1}]] |
If K is slice |
False |