Gauss code |
O1O2O3O4O5U1U4U3O6U5U2U6 |
R3 orbit |
{'O1O2O3O4O5U1U4U3O6U5U2U6'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5U6U4U1O6U3U2U5 |
Gauss code of K* |
O1O2O3U4O5O6O4U1U6U3U2U5 |
Gauss code of -K* |
O1O2O3U1O4O5O6U3U5U4U2U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
True |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -4 0 0 0 2 2],[ 4 0 4 2 1 3 2],[ 0 -4 0 -1 -1 2 2],[ 0 -2 1 0 0 2 1],[ 0 -1 1 0 0 1 1],[-2 -3 -2 -2 -1 0 1],[-2 -2 -2 -1 -1 -1 0]] |
Primitive based matrix |
[[ 0 2 2 0 0 0 -4],[-2 0 1 -1 -2 -2 -3],[-2 -1 0 -1 -1 -2 -2],[ 0 1 1 0 0 1 -1],[ 0 2 1 0 0 1 -2],[ 0 2 2 -1 -1 0 -4],[ 4 3 2 1 2 4 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-2,0,0,0,4,-1,1,2,2,3,1,1,2,2,0,-1,1,-1,2,4] |
Phi over symmetry |
[-4,0,0,0,2,2,0,2,3,3,4,1,1,0,0,0,0,1,1,1,-1] |
Phi of -K |
[-4,0,0,0,2,2,0,2,3,3,4,1,1,0,0,0,0,1,1,1,-1] |
Phi of K* |
[-2,-2,0,0,0,4,-1,0,1,1,4,0,0,1,3,-1,-1,0,0,2,3] |
Phi of -K* |
[-4,0,0,0,2,2,1,2,4,2,3,0,1,1,1,1,1,2,2,2,-1] |
Symmetry type of based matrix |
c |
u-polynomial |
t^4-2t^2 |
Normalized Jones-Krushkal polynomial |
2z^3+15z^2+30z+17 |
Enhanced Jones-Krushkal polynomial |
2w^4z^3+15w^3z^2+30w^2z+17 |
Inner characteristic polynomial |
t^6+52t^4+25t^2+1 |
Outer characteristic polynomial |
t^7+76t^5+105t^3+25t |
Flat arrow polynomial |
4*K1**2*K2 - 4*K1**2 - 2*K2**2 + 3 |
2-strand cable arrow polynomial |
-32*K2**4*K4**2 + 416*K2**4*K4 - 3488*K2**4 - 128*K2**3*K6 + 32*K2**2*K4**3 - 560*K2**2*K4**2 + 4088*K2**2*K4 - 644*K2**2 + 392*K2*K4*K6 - 8*K4**4 - 1192*K4**2 - 76*K6**2 + 1198 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {4, 5}, {2, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {4, 5}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {3, 5}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {2, 4}, {1, 3}], [{6}, {5}, {2, 4}, {1, 3}]] |
If K is slice |
False |