Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.492

Min(phi) over symmetries of the knot is: [-4,-1,0,1,2,2,0,3,1,4,4,2,1,1,2,0,2,1,0,0,0]
Flat knots (up to 7 crossings) with same phi are :['6.492']
Arrow polynomial of the knot is: 4*K1**3 + 4*K1**2*K2 - 6*K1**2 - 4*K1*K2 - 2*K1*K3 - K1 + 2*K2 + K3 + 3
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.94', '6.482', '6.492']
Outer characteristic polynomial of the knot is: t^7+71t^5+162t^3+15t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.492']
2-strand cable arrow polynomial of the knot is: -64*K1**4*K2**2 + 128*K1**4*K2 - 208*K1**4 + 64*K1**3*K2*K3 - 192*K1**3*K3 - 768*K1**2*K2**4 - 512*K1**2*K2**3*K4 + 3680*K1**2*K2**3 - 64*K1**2*K2**2*K3**2 + 448*K1**2*K2**2*K4 - 7984*K1**2*K2**2 + 64*K1**2*K2*K3**2 - 736*K1**2*K2*K4 + 5832*K1**2*K2 - 176*K1**2*K3**2 - 4016*K1**2 + 384*K1*K2**4*K3*K4 - 768*K1*K2**4*K3 - 256*K1*K2**3*K3*K4 + 3392*K1*K2**3*K3 + 832*K1*K2**2*K3*K4 - 2272*K1*K2**2*K3 + 32*K1*K2**2*K4*K5 - 576*K1*K2**2*K5 - 448*K1*K2*K3*K4 - 32*K1*K2*K3*K6 + 6344*K1*K2*K3 + 672*K1*K3*K4 + 32*K1*K4*K5 - 32*K2**6 - 384*K2**4*K3**2 - 288*K2**4*K4**2 + 1184*K2**4*K4 - 4920*K2**4 + 288*K2**3*K3*K5 + 64*K2**3*K4*K6 - 64*K2**3*K6 - 1808*K2**2*K3**2 - 704*K2**2*K4**2 + 2912*K2**2*K4 - 64*K2**2*K5**2 - 8*K2**2*K6**2 - 698*K2**2 + 616*K2*K3*K5 + 112*K2*K4*K6 + 8*K2*K5*K7 - 1452*K3**2 - 464*K4**2 - 36*K5**2 - 6*K6**2 + 2910
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.492']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.70461', 'vk6.70478', 'vk6.70524', 'vk6.70599', 'vk6.70631', 'vk6.70658', 'vk6.70751', 'vk6.70839', 'vk6.70912', 'vk6.70942', 'vk6.71005', 'vk6.71110', 'vk6.71151', 'vk6.71168', 'vk6.71240', 'vk6.71299', 'vk6.71318', 'vk6.71335', 'vk6.73548', 'vk6.74356', 'vk6.75005', 'vk6.75303', 'vk6.76574', 'vk6.76638', 'vk6.76987', 'vk6.78283', 'vk6.79400', 'vk6.79938', 'vk6.81497', 'vk6.86868', 'vk6.88056', 'vk6.89229']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4O5U1U4U5O6U2U3U6
R3 orbit {'O1O2O3O4O5U1U4U5O6U2U3U6'}
R3 orbit length 1
Gauss code of -K O1O2O3O4O5U6U3U4O6U1U2U5
Gauss code of K* O1O2O3U4O5O6O4U1U5U6U2U3
Gauss code of -K* O1O2O3U1O4O5O6U4U5U2U3U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -4 -1 1 0 2 2],[ 4 0 3 4 1 2 2],[ 1 -3 0 1 -1 1 2],[-1 -4 -1 0 -1 1 1],[ 0 -1 1 1 0 1 0],[-2 -2 -1 -1 -1 0 0],[-2 -2 -2 -1 0 0 0]]
Primitive based matrix [[ 0 2 2 1 0 -1 -4],[-2 0 0 -1 0 -2 -2],[-2 0 0 -1 -1 -1 -2],[-1 1 1 0 -1 -1 -4],[ 0 0 1 1 0 1 -1],[ 1 2 1 1 -1 0 -3],[ 4 2 2 4 1 3 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-2,-1,0,1,4,0,1,0,2,2,1,1,1,2,1,1,4,-1,1,3]
Phi over symmetry [-4,-1,0,1,2,2,0,3,1,4,4,2,1,1,2,0,2,1,0,0,0]
Phi of -K [-4,-1,0,1,2,2,0,3,1,4,4,2,1,1,2,0,2,1,0,0,0]
Phi of K* [-2,-2,-1,0,1,4,0,0,1,2,4,0,2,1,4,0,1,1,2,3,0]
Phi of -K* [-4,-1,0,1,2,2,3,1,4,2,2,-1,1,1,2,1,1,0,1,1,0]
Symmetry type of based matrix c
u-polynomial t^4-2t^2
Normalized Jones-Krushkal polynomial 5z^2+18z+17
Enhanced Jones-Krushkal polynomial -4w^4z^2+9w^3z^2-8w^3z+26w^2z+17w
Inner characteristic polynomial t^6+45t^4+56t^2
Outer characteristic polynomial t^7+71t^5+162t^3+15t
Flat arrow polynomial 4*K1**3 + 4*K1**2*K2 - 6*K1**2 - 4*K1*K2 - 2*K1*K3 - K1 + 2*K2 + K3 + 3
2-strand cable arrow polynomial -64*K1**4*K2**2 + 128*K1**4*K2 - 208*K1**4 + 64*K1**3*K2*K3 - 192*K1**3*K3 - 768*K1**2*K2**4 - 512*K1**2*K2**3*K4 + 3680*K1**2*K2**3 - 64*K1**2*K2**2*K3**2 + 448*K1**2*K2**2*K4 - 7984*K1**2*K2**2 + 64*K1**2*K2*K3**2 - 736*K1**2*K2*K4 + 5832*K1**2*K2 - 176*K1**2*K3**2 - 4016*K1**2 + 384*K1*K2**4*K3*K4 - 768*K1*K2**4*K3 - 256*K1*K2**3*K3*K4 + 3392*K1*K2**3*K3 + 832*K1*K2**2*K3*K4 - 2272*K1*K2**2*K3 + 32*K1*K2**2*K4*K5 - 576*K1*K2**2*K5 - 448*K1*K2*K3*K4 - 32*K1*K2*K3*K6 + 6344*K1*K2*K3 + 672*K1*K3*K4 + 32*K1*K4*K5 - 32*K2**6 - 384*K2**4*K3**2 - 288*K2**4*K4**2 + 1184*K2**4*K4 - 4920*K2**4 + 288*K2**3*K3*K5 + 64*K2**3*K4*K6 - 64*K2**3*K6 - 1808*K2**2*K3**2 - 704*K2**2*K4**2 + 2912*K2**2*K4 - 64*K2**2*K5**2 - 8*K2**2*K6**2 - 698*K2**2 + 616*K2*K3*K5 + 112*K2*K4*K6 + 8*K2*K5*K7 - 1452*K3**2 - 464*K4**2 - 36*K5**2 - 6*K6**2 + 2910
Genus of based matrix 2
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {1, 5}, {4}, {3}, {2}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {2, 4}, {3}, {1}], [{6}, {5}, {3, 4}, {1, 2}]]
If K is slice False
Contact