Gauss code |
O1O2O3O4O5U1U4U5O6U3U2U6 |
R3 orbit |
{'O1O2O3O4O5U1U4U5O6U3U2U6'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5U6U4U3O6U1U2U5 |
Gauss code of K* |
O1O2O3U4O5O6O4U1U6U5U2U3 |
Gauss code of -K* |
O1O2O3U1O4O5O6U4U5U3U2U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
True |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -4 0 0 0 2 2],[ 4 0 4 3 1 2 2],[ 0 -4 0 0 -1 1 2],[ 0 -3 0 0 -1 1 1],[ 0 -1 1 1 0 1 0],[-2 -2 -1 -1 -1 0 0],[-2 -2 -2 -1 0 0 0]] |
Primitive based matrix |
[[ 0 2 2 0 0 0 -4],[-2 0 0 0 -1 -2 -2],[-2 0 0 -1 -1 -1 -2],[ 0 0 1 0 1 1 -1],[ 0 1 1 -1 0 0 -3],[ 0 2 1 -1 0 0 -4],[ 4 2 2 1 3 4 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-2,0,0,0,4,0,0,1,2,2,1,1,1,2,-1,-1,1,0,3,4] |
Phi over symmetry |
[-4,0,0,0,2,2,0,1,3,4,4,0,1,0,1,1,1,1,2,1,0] |
Phi of -K |
[-4,0,0,0,2,2,0,1,3,4,4,0,1,0,1,1,1,1,2,1,0] |
Phi of K* |
[-2,-2,0,0,0,4,0,0,1,2,4,1,1,1,4,0,-1,0,-1,1,3] |
Phi of -K* |
[-4,0,0,0,2,2,1,3,4,2,2,1,1,0,1,0,1,1,2,1,0] |
Symmetry type of based matrix |
c |
u-polynomial |
t^4-2t^2 |
Normalized Jones-Krushkal polynomial |
3z^3+17z^2+29z+15 |
Enhanced Jones-Krushkal polynomial |
3w^4z^3+17w^3z^2+29w^2z+15 |
Inner characteristic polynomial |
t^6+44t^4+47t^2+1 |
Outer characteristic polynomial |
t^7+68t^5+135t^3+25t |
Flat arrow polynomial |
4*K1**2*K2 - 4*K1**2 - 2*K2**2 + 3 |
2-strand cable arrow polynomial |
-288*K2**4*K4**2 + 1728*K2**4*K4 - 4544*K2**4 + 96*K2**3*K4*K6 - 256*K2**3*K6 + 64*K2**2*K4**3 - 1360*K2**2*K4**2 + 3784*K2**2*K4 + 340*K2**2 + 456*K2*K4*K6 - 8*K4**4 - 904*K4**2 - 20*K6**2 + 910 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {3, 5}, {2, 4}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {3, 5}, {1, 4}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {2, 5}, {1, 4}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {3, 4}, {1, 2}], [{6}, {5}, {2, 4}, {1, 3}]] |
If K is slice |
False |