Gauss code |
O1O2O3O4O5U1U6U2O6U4U5U3 |
R3 orbit |
{'O1O2O3O4O5U1U6U2O6U4U5U3'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5U3U1U2O6U4U6U5 |
Gauss code of K* |
O1O2O3U2O4O5O6U1U3U6U4U5 |
Gauss code of -K* |
O1O2O3U4O5O4O6U2U3U1U5U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -4 -1 2 1 3 -1],[ 4 0 1 4 2 3 3],[ 1 -1 0 2 0 1 1],[-2 -4 -2 0 -1 1 -2],[-1 -2 0 1 0 1 -1],[-3 -3 -1 -1 -1 0 -3],[ 1 -3 -1 2 1 3 0]] |
Primitive based matrix |
[[ 0 3 2 1 -1 -1 -4],[-3 0 -1 -1 -1 -3 -3],[-2 1 0 -1 -2 -2 -4],[-1 1 1 0 0 -1 -2],[ 1 1 2 0 0 1 -1],[ 1 3 2 1 -1 0 -3],[ 4 3 4 2 1 3 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,-2,-1,1,1,4,1,1,1,3,3,1,2,2,4,0,1,2,-1,1,3] |
Phi over symmetry |
[-4,-1,-1,1,2,3,0,2,3,2,4,1,1,1,1,2,1,3,0,1,0] |
Phi of -K |
[-4,-1,-1,1,2,3,0,2,3,2,4,1,1,1,1,2,1,3,0,1,0] |
Phi of K* |
[-3,-2,-1,1,1,4,0,1,1,3,4,0,1,1,2,1,2,3,-1,0,2] |
Phi of -K* |
[-4,-1,-1,1,2,3,1,3,2,4,3,1,0,2,1,1,2,3,1,1,1] |
Symmetry type of based matrix |
c |
u-polynomial |
t^4-t^3-t^2+t |
Normalized Jones-Krushkal polynomial |
5z^2+22z+25 |
Enhanced Jones-Krushkal polynomial |
5w^3z^2+22w^2z+25w |
Inner characteristic polynomial |
t^6+62t^4+83t^2 |
Outer characteristic polynomial |
t^7+94t^5+164t^3+4t |
Flat arrow polynomial |
8*K1**3 + 4*K1**2*K2 - 8*K1**2 - 6*K1*K2 - 2*K1*K3 - 3*K1 + 3*K2 + K3 + 4 |
2-strand cable arrow polynomial |
-320*K1**4*K2**2 + 576*K1**4*K2 - 1152*K1**4 + 224*K1**3*K2*K3 - 128*K1**3*K3 - 640*K1**2*K2**4 + 1920*K1**2*K2**3 - 128*K1**2*K2**2*K3**2 + 96*K1**2*K2**2*K4 - 5776*K1**2*K2**2 + 192*K1**2*K2*K3**2 - 480*K1**2*K2*K4 + 5288*K1**2*K2 - 352*K1**2*K3**2 - 3028*K1**2 + 1184*K1*K2**3*K3 + 480*K1*K2**2*K3*K4 - 1440*K1*K2**2*K3 + 32*K1*K2**2*K4*K5 - 256*K1*K2**2*K5 - 352*K1*K2*K3*K4 - 32*K1*K2*K3*K6 + 5160*K1*K2*K3 + 664*K1*K3*K4 + 40*K1*K4*K5 + 8*K1*K5*K6 - 64*K2**6 - 64*K2**4*K3**2 - 32*K2**4*K4**2 + 224*K2**4*K4 - 1872*K2**4 + 128*K2**3*K3*K5 + 32*K2**3*K4*K6 - 32*K2**3*K6 - 1040*K2**2*K3**2 - 344*K2**2*K4**2 + 1592*K2**2*K4 - 80*K2**2*K5**2 - 8*K2**2*K6**2 - 1730*K2**2 + 624*K2*K3*K5 + 64*K2*K4*K6 + 8*K2*K5*K7 - 1248*K3**2 - 374*K4**2 - 108*K5**2 - 14*K6**2 + 2556 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {2, 5}, {3, 4}], [{2, 6}, {4, 5}, {1, 3}]] |
If K is slice |
False |