| Gauss code |
O1O2O3O4O5U1U6U2O6U5U4U3 |
| R3 orbit |
{'O1O2O3O4O5U1U6U2O6U5U4U3'} |
| R3 orbit length |
1 |
| Gauss code of -K |
O1O2O3O4O5U3U2U1O6U4U6U5 |
| Gauss code of K* |
O1O2O3U2O4O5O6U1U3U6U5U4 |
| Gauss code of -K* |
O1O2O3U4O5O4O6U3U2U1U5U6 |
| Diagrammatic symmetry type |
c |
| Flat genus of the diagram |
2 |
| If K is checkerboard colorable |
False |
| If K is almost classical |
False |
| Based matrix from Gauss code |
[[ 0 -4 -1 2 2 2 -1],[ 4 0 1 4 3 2 3],[ 1 -1 0 2 1 0 1],[-2 -4 -2 0 0 0 -2],[-2 -3 -1 0 0 0 -2],[-2 -2 0 0 0 0 -2],[ 1 -3 -1 2 2 2 0]] |
| Primitive based matrix |
[[ 0 2 2 2 -1 -1 -4],[-2 0 0 0 0 -2 -2],[-2 0 0 0 -1 -2 -3],[-2 0 0 0 -2 -2 -4],[ 1 0 1 2 0 1 -1],[ 1 2 2 2 -1 0 -3],[ 4 2 3 4 1 3 0]] |
| If based matrix primitive |
True |
| Phi of primitive based matrix |
[-2,-2,-2,1,1,4,0,0,0,2,2,0,1,2,3,2,2,4,-1,1,3] |
| Phi over symmetry |
[-4,-1,-1,2,2,2,0,2,2,3,4,1,1,1,1,1,2,3,0,0,0] |
| Phi of -K |
[-4,-1,-1,2,2,2,0,2,2,3,4,1,1,1,1,1,2,3,0,0,0] |
| Phi of K* |
[-2,-2,-2,1,1,4,0,0,1,1,2,0,1,2,3,1,3,4,-1,0,2] |
| Phi of -K* |
[-4,-1,-1,2,2,2,1,3,2,3,4,1,0,1,2,2,2,2,0,0,0] |
| Symmetry type of based matrix |
c |
| u-polynomial |
t^4-3t^2+2t |
| Normalized Jones-Krushkal polynomial |
3z+7 |
| Enhanced Jones-Krushkal polynomial |
-12w^3z+15w^2z+7w |
| Inner characteristic polynomial |
t^6+57t^4+92t^2 |
| Outer characteristic polynomial |
t^7+87t^5+175t^3 |
| Flat arrow polynomial |
4*K1**3 - 4*K1*K2 - 2*K1*K3 - K1 + K2 + K3 + K4 + 1 |
| 2-strand cable arrow polynomial |
-144*K1**4 + 192*K1**3*K2*K3 - 992*K1**2*K2**2 + 640*K1**2*K2 - 208*K1**2*K3**2 - 592*K1**2 + 64*K1*K2**3*K3 + 1416*K1*K2*K3 + 240*K1*K3*K4 + 72*K1*K4*K5 + 24*K1*K5*K6 - 32*K2**6 + 64*K2**4*K4 - 880*K2**4 + 32*K2**3*K3*K5 - 352*K2**2*K3**2 - 48*K2**2*K4**2 + 848*K2**2*K4 - 48*K2**2*K5**2 - 8*K2**2*K6**2 - 674*K2**2 + 576*K2*K3*K5 + 56*K2*K4*K6 + 24*K2*K5*K7 + 8*K2*K6*K8 + 24*K3**2*K6 - 708*K3**2 - 366*K4**2 - 256*K5**2 - 46*K6**2 - 4*K7**2 - 2*K8**2 + 1078 |
| Genus of based matrix |
1 |
| Fillings of based matrix |
[[{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{2, 6}, {4, 5}, {1, 3}]] |
| If K is slice |
False |