Gauss code |
O1O2O3O4O5U1U6U3O6U5U4U2 |
R3 orbit |
{'O1O2O3O4O5U1U6U3O6U5U4U2'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5U4U2U1O6U3U6U5 |
Gauss code of K* |
O1O2O3U2O4O5O6U1U6U3U5U4 |
Gauss code of -K* |
O1O2O3U4O5O4O6U3U2U5U1U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -4 1 0 2 2 -1],[ 4 0 4 1 3 2 3],[-1 -4 0 -1 1 1 -2],[ 0 -1 1 0 1 0 0],[-2 -3 -1 -1 0 0 -2],[-2 -2 -1 0 0 0 -2],[ 1 -3 2 0 2 2 0]] |
Primitive based matrix |
[[ 0 2 2 1 0 -1 -4],[-2 0 0 -1 0 -2 -2],[-2 0 0 -1 -1 -2 -3],[-1 1 1 0 -1 -2 -4],[ 0 0 1 1 0 0 -1],[ 1 2 2 2 0 0 -3],[ 4 2 3 4 1 3 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-2,-1,0,1,4,0,1,0,2,2,1,1,2,3,1,2,4,0,1,3] |
Phi over symmetry |
[-4,-1,0,1,2,2,0,3,1,3,4,1,0,1,1,0,1,2,0,0,0] |
Phi of -K |
[-4,-1,0,1,2,2,0,3,1,3,4,1,0,1,1,0,1,2,0,0,0] |
Phi of K* |
[-2,-2,-1,0,1,4,0,0,1,1,3,0,2,1,4,0,0,1,1,3,0] |
Phi of -K* |
[-4,-1,0,1,2,2,3,1,4,2,3,0,2,2,2,1,0,1,1,1,0] |
Symmetry type of based matrix |
c |
u-polynomial |
t^4-2t^2 |
Normalized Jones-Krushkal polynomial |
6z^2+27z+31 |
Enhanced Jones-Krushkal polynomial |
6w^3z^2+27w^2z+31w |
Inner characteristic polynomial |
t^6+55t^4+35t^2+1 |
Outer characteristic polynomial |
t^7+81t^5+77t^3+5t |
Flat arrow polynomial |
-4*K1*K2 + 2*K1 - 2*K2**2 + 2*K3 + K4 + 2 |
2-strand cable arrow polynomial |
800*K1**4*K2 - 3792*K1**4 + 352*K1**3*K2*K3 + 64*K1**3*K3*K4 - 1152*K1**3*K3 + 256*K1**2*K2**3 + 96*K1**2*K2**2*K4 - 3584*K1**2*K2**2 - 704*K1**2*K2*K4 + 8200*K1**2*K2 - 1488*K1**2*K3**2 - 256*K1**2*K4**2 - 5276*K1**2 + 64*K1*K2**3*K3 - 704*K1*K2**2*K3 - 160*K1*K2**2*K5 - 544*K1*K2*K3*K4 + 7328*K1*K2*K3 + 2736*K1*K3*K4 + 632*K1*K4*K5 + 8*K1*K5*K6 - 352*K2**4 - 192*K2**2*K3**2 - 112*K2**2*K4**2 + 1344*K2**2*K4 - 4692*K2**2 - 64*K2*K3**2*K4 + 584*K2*K3*K5 + 144*K2*K4*K6 - 96*K3**4 - 48*K3**2*K4**2 + 120*K3**2*K6 - 2856*K3**2 + 32*K3*K4*K7 - 8*K4**4 + 8*K4**2*K8 - 1364*K4**2 - 352*K5**2 - 68*K6**2 - 4*K7**2 - 2*K8**2 + 5100 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{3, 6}, {1, 5}, {2, 4}], [{4, 6}, {1, 5}, {2, 3}]] |
If K is slice |
False |