Gauss code |
O1O2O3O4O5U1U6U5O6U3U4U2 |
R3 orbit |
{'O1O2O3O4O5U1U6U5O6U3U4U2'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5U4U2U3O6U1U6U5 |
Gauss code of K* |
O1O2O3U2O4O5O6U1U6U4U5U3 |
Gauss code of -K* |
O1O2O3U4O5O4O6U5U2U3U1U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -4 1 0 2 2 -1],[ 4 0 4 2 3 1 3],[-1 -4 0 -1 1 1 -2],[ 0 -2 1 0 1 1 -1],[-2 -3 -1 -1 0 1 -3],[-2 -1 -1 -1 -1 0 -2],[ 1 -3 2 1 3 2 0]] |
Primitive based matrix |
[[ 0 2 2 1 0 -1 -4],[-2 0 1 -1 -1 -3 -3],[-2 -1 0 -1 -1 -2 -1],[-1 1 1 0 -1 -2 -4],[ 0 1 1 1 0 -1 -2],[ 1 3 2 2 1 0 -3],[ 4 3 1 4 2 3 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-2,-1,0,1,4,-1,1,1,3,3,1,1,2,1,1,2,4,1,2,3] |
Phi over symmetry |
[-4,-1,0,1,2,2,0,2,1,3,5,0,0,0,1,0,1,1,0,0,-1] |
Phi of -K |
[-4,-1,0,1,2,2,0,2,1,3,5,0,0,0,1,0,1,1,0,0,-1] |
Phi of K* |
[-2,-2,-1,0,1,4,-1,0,1,1,5,0,1,0,3,0,0,1,0,2,0] |
Phi of -K* |
[-4,-1,0,1,2,2,3,2,4,1,3,1,2,2,3,1,1,1,1,1,-1] |
Symmetry type of based matrix |
c |
u-polynomial |
t^4-2t^2 |
Normalized Jones-Krushkal polynomial |
5z^2+26z+33 |
Enhanced Jones-Krushkal polynomial |
5w^3z^2+26w^2z+33w |
Inner characteristic polynomial |
t^6+63t^4+40t^2 |
Outer characteristic polynomial |
t^7+89t^5+76t^3+7t |
Flat arrow polynomial |
8*K1**3 + 4*K1**2*K2 - 10*K1**2 - 8*K1*K2 - 2*K1*K3 - 2*K1 + 4*K2 + 2*K3 + 5 |
2-strand cable arrow polynomial |
-256*K1**6 - 832*K1**4*K2**2 + 2560*K1**4*K2 - 4656*K1**4 - 384*K1**3*K2**2*K3 + 1472*K1**3*K2*K3 - 960*K1**3*K3 - 448*K1**2*K2**4 - 128*K1**2*K2**3*K4 + 2784*K1**2*K2**3 - 256*K1**2*K2**2*K3**2 + 512*K1**2*K2**2*K4 - 11024*K1**2*K2**2 + 64*K1**2*K2*K3**2 - 1632*K1**2*K2*K4 + 11472*K1**2*K2 - 848*K1**2*K3**2 - 32*K1**2*K3*K5 - 144*K1**2*K4**2 - 5580*K1**2 - 128*K1*K2**3*K3*K4 + 2368*K1*K2**3*K3 + 800*K1*K2**2*K3*K4 - 1856*K1*K2**2*K3 + 128*K1*K2**2*K4*K5 - 672*K1*K2**2*K5 - 480*K1*K2*K3*K4 + 9552*K1*K2*K3 - 96*K1*K2*K4*K5 + 1784*K1*K3*K4 + 280*K1*K4*K5 + 8*K1*K5*K6 - 64*K2**6 - 64*K2**4*K3**2 - 32*K2**4*K4**2 + 512*K2**4*K4 - 2728*K2**4 + 288*K2**3*K3*K5 + 32*K2**3*K4*K6 - 64*K2**3*K6 - 1616*K2**2*K3**2 - 704*K2**2*K4**2 + 2496*K2**2*K4 - 176*K2**2*K5**2 - 8*K2**2*K6**2 - 3984*K2**2 - 64*K2*K3**2*K4 - 32*K2*K3*K4*K5 + 968*K2*K3*K5 + 208*K2*K4*K6 + 24*K2*K5*K7 + 8*K3**2*K6 - 2456*K3**2 - 964*K4**2 - 252*K5**2 - 24*K6**2 + 5322 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}]] |
If K is slice |
False |