Gauss code |
O1O2O3O4O5U1U6U5O6U4U3U2 |
R3 orbit |
{'O1O2O3O4O5U1U6U5O6U4U3U2'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5U4U3U2O6U1U6U5 |
Gauss code of K* |
O1O2O3U2O4O5O6U1U6U5U4U3 |
Gauss code of -K* |
O1O2O3U4O5O4O6U5U3U2U1U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -4 1 1 1 2 -1],[ 4 0 4 3 2 1 3],[-1 -4 0 0 0 1 -2],[-1 -3 0 0 0 1 -2],[-1 -2 0 0 0 1 -2],[-2 -1 -1 -1 -1 0 -2],[ 1 -3 2 2 2 2 0]] |
Primitive based matrix |
[[ 0 2 1 1 1 -1 -4],[-2 0 -1 -1 -1 -2 -1],[-1 1 0 0 0 -2 -2],[-1 1 0 0 0 -2 -3],[-1 1 0 0 0 -2 -4],[ 1 2 2 2 2 0 -3],[ 4 1 2 3 4 3 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-1,-1,-1,1,4,1,1,1,2,1,0,0,2,2,0,2,3,2,4,3] |
Phi over symmetry |
[-4,-1,1,1,1,2,0,1,2,3,5,0,0,0,1,0,0,0,0,0,0] |
Phi of -K |
[-4,-1,1,1,1,2,0,1,2,3,5,0,0,0,1,0,0,0,0,0,0] |
Phi of K* |
[-2,-1,-1,-1,1,4,0,0,0,1,5,0,0,0,1,0,0,2,0,3,0] |
Phi of -K* |
[-4,-1,1,1,1,2,3,2,3,4,1,2,2,2,2,0,0,1,0,1,1] |
Symmetry type of based matrix |
c |
u-polynomial |
t^4-t^2-2t |
Normalized Jones-Krushkal polynomial |
5z+11 |
Enhanced Jones-Krushkal polynomial |
-4w^4z^2+4w^3z^2-12w^3z+17w^2z+11w |
Inner characteristic polynomial |
t^6+58t^4+41t^2 |
Outer characteristic polynomial |
t^7+82t^5+76t^3+6t |
Flat arrow polynomial |
-2*K1**2 - 4*K1*K2 + 2*K1 - 2*K2**2 + K2 + 2*K3 + K4 + 3 |
2-strand cable arrow polynomial |
-432*K1**4 + 96*K1**3*K3*K4 - 752*K1**2*K2**2 - 576*K1**2*K2*K4 + 1992*K1**2*K2 - 208*K1**2*K3**2 - 352*K1**2*K4**2 - 2536*K1**2 - 256*K1*K2**2*K3 - 384*K1*K2**2*K5 - 32*K1*K2*K3*K4 + 2408*K1*K2*K3 - 160*K1*K2*K4*K5 + 1688*K1*K3*K4 + 696*K1*K4*K5 + 120*K1*K5*K6 - 72*K2**4 - 80*K2**2*K4**2 + 880*K2**2*K4 - 2132*K2**2 - 32*K2*K3*K4*K5 + 560*K2*K3*K5 + 184*K2*K4*K6 + 8*K2*K5*K7 - 16*K3**2*K4**2 + 48*K3**2*K6 - 1436*K3**2 + 24*K3*K4*K7 - 8*K4**4 + 8*K4**2*K8 - 1118*K4**2 - 464*K5**2 - 116*K6**2 - 4*K7**2 - 2*K8**2 + 2454 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {4, 5}, {1, 3}]] |
If K is slice |
False |