Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.517

Min(phi) over symmetries of the knot is: [-3,-3,0,2,2,2,0,0,1,3,3,1,2,3,4,1,0,2,-1,0,0]
Flat knots (up to 7 crossings) with same phi are :['6.517']
Arrow polynomial of the knot is: -8*K1**4 + 8*K1**2*K2 + 4*K1**2 - 2*K1*K3 - K2
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.133', '6.517', '6.545', '6.1198', '6.1251', '6.1906']
Outer characteristic polynomial of the knot is: t^7+87t^5+220t^3+12t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.517']
2-strand cable arrow polynomial of the knot is: -256*K1**2*K2**4 + 1632*K1**2*K2**3 - 3808*K1**2*K2**2 - 224*K1**2*K2*K4 + 3512*K1**2*K2 - 2840*K1**2 + 992*K1*K2**3*K3 + 160*K1*K2**2*K3*K4 - 1632*K1*K2**2*K3 + 192*K1*K2**2*K4*K5 - 608*K1*K2**2*K5 - 256*K1*K2*K3*K4 + 4128*K1*K2*K3 + 328*K1*K3*K4 + 184*K1*K4*K5 - 128*K2**8 + 256*K2**6*K4 - 1216*K2**6 - 128*K2**4*K3**2 - 192*K2**4*K4**2 + 1632*K2**4*K4 - 3328*K2**4 + 256*K2**3*K3*K5 + 64*K2**3*K4*K6 - 224*K2**3*K6 - 896*K2**2*K3**2 - 672*K2**2*K4**2 + 2904*K2**2*K4 - 192*K2**2*K5**2 - 8*K2**2*K6**2 - 1032*K2**2 + 808*K2*K3*K5 + 112*K2*K4*K6 - 1152*K3**2 - 514*K4**2 - 200*K5**2 - 8*K6**2 + 2352
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.517']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.73190', 'vk6.73206', 'vk6.73628', 'vk6.74307', 'vk6.74406', 'vk6.74949', 'vk6.75017', 'vk6.75104', 'vk6.75123', 'vk6.75560', 'vk6.75588', 'vk6.76519', 'vk6.76586', 'vk6.76930', 'vk6.78046', 'vk6.78066', 'vk6.78526', 'vk6.78554', 'vk6.79359', 'vk6.79781', 'vk6.79859', 'vk6.79966', 'vk6.80819', 'vk6.80886', 'vk6.83685', 'vk6.84712', 'vk6.84819', 'vk6.85275', 'vk6.85639', 'vk6.87702', 'vk6.88374', 'vk6.89497']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4O5U2U1U5O6U3U4U6
R3 orbit {'O1O2O3O4O5U2U1U5O6U3U4U6'}
R3 orbit length 1
Gauss code of -K O1O2O3O4O5U6U2U3O6U1U5U4
Gauss code of K* O1O2O3U4O5O6O4U2U1U5U6U3
Gauss code of -K* O1O2O3U1O4O5O6U4U2U3U6U5
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -3 -3 0 2 2 2],[ 3 0 0 3 4 2 2],[ 3 0 0 2 3 1 2],[ 0 -3 -2 0 1 0 2],[-2 -4 -3 -1 0 0 1],[-2 -2 -1 0 0 0 0],[-2 -2 -2 -2 -1 0 0]]
Primitive based matrix [[ 0 2 2 2 0 -3 -3],[-2 0 1 0 -1 -3 -4],[-2 -1 0 0 -2 -2 -2],[-2 0 0 0 0 -1 -2],[ 0 1 2 0 0 -2 -3],[ 3 3 2 1 2 0 0],[ 3 4 2 2 3 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-2,-2,0,3,3,-1,0,1,3,4,0,2,2,2,0,1,2,2,3,0]
Phi over symmetry [-3,-3,0,2,2,2,0,0,1,3,3,1,2,3,4,1,0,2,-1,0,0]
Phi of -K [-3,-3,0,2,2,2,0,0,1,3,3,1,2,3,4,1,0,2,-1,0,0]
Phi of K* [-2,-2,-2,0,3,3,-1,0,0,3,3,0,1,1,2,2,3,4,0,1,0]
Phi of -K* [-3,-3,0,2,2,2,0,2,1,2,3,3,2,2,4,0,2,1,0,0,-1]
Symmetry type of based matrix c
u-polynomial 2t^3-3t^2
Normalized Jones-Krushkal polynomial 6z^2+19z+15
Enhanced Jones-Krushkal polynomial -4w^4z^2+10w^3z^2-4w^3z+23w^2z+15w
Inner characteristic polynomial t^6+57t^4+61t^2+1
Outer characteristic polynomial t^7+87t^5+220t^3+12t
Flat arrow polynomial -8*K1**4 + 8*K1**2*K2 + 4*K1**2 - 2*K1*K3 - K2
2-strand cable arrow polynomial -256*K1**2*K2**4 + 1632*K1**2*K2**3 - 3808*K1**2*K2**2 - 224*K1**2*K2*K4 + 3512*K1**2*K2 - 2840*K1**2 + 992*K1*K2**3*K3 + 160*K1*K2**2*K3*K4 - 1632*K1*K2**2*K3 + 192*K1*K2**2*K4*K5 - 608*K1*K2**2*K5 - 256*K1*K2*K3*K4 + 4128*K1*K2*K3 + 328*K1*K3*K4 + 184*K1*K4*K5 - 128*K2**8 + 256*K2**6*K4 - 1216*K2**6 - 128*K2**4*K3**2 - 192*K2**4*K4**2 + 1632*K2**4*K4 - 3328*K2**4 + 256*K2**3*K3*K5 + 64*K2**3*K4*K6 - 224*K2**3*K6 - 896*K2**2*K3**2 - 672*K2**2*K4**2 + 2904*K2**2*K4 - 192*K2**2*K5**2 - 8*K2**2*K6**2 - 1032*K2**2 + 808*K2*K3*K5 + 112*K2*K4*K6 - 1152*K3**2 - 514*K4**2 - 200*K5**2 - 8*K6**2 + 2352
Genus of based matrix 2
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{3, 6}, {5}, {4}, {2}, {1}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {3, 4}, {1, 2}]]
If K is slice False
Contact