Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.523

Min(phi) over symmetries of the knot is: [-3,-2,0,1,2,2,0,2,3,2,3,1,2,1,1,0,1,1,2,2,0]
Flat knots (up to 7 crossings) with same phi are :['6.523']
Arrow polynomial of the knot is: -6*K1**2 - 2*K1*K2 + K1 + 3*K2 + K3 + 4
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.323', '6.380', '6.444', '6.472', '6.523', '6.579', '6.592', '6.595', '6.609', '6.614', '6.620', '6.644', '6.648', '6.669', '6.671', '6.681', '6.693', '6.724', '6.725', '6.757', '6.766', '6.785', '6.786', '6.797', '6.798', '6.816', '6.833', '6.972', '6.978', '6.1056', '6.1064', '6.1066', '6.1087', '6.1094', '6.1273', '6.1277', '6.1282', '6.1295', '6.1300', '6.1313', '6.1344', '6.1353', '6.1354']
Outer characteristic polynomial of the knot is: t^7+63t^5+60t^3+4t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.523']
2-strand cable arrow polynomial of the knot is: -64*K1**6 + 64*K1**4*K2 - 1360*K1**4 + 32*K1**3*K2*K3 - 192*K1**3*K3 - 1488*K1**2*K2**2 + 96*K1**2*K2*K3**2 - 192*K1**2*K2*K4 + 3760*K1**2*K2 - 496*K1**2*K3**2 - 96*K1**2*K3*K5 - 48*K1**2*K4**2 - 2464*K1**2 - 448*K1*K2**2*K3 + 3136*K1*K2*K3 + 904*K1*K3*K4 + 40*K1*K4*K5 - 88*K2**4 - 160*K2**2*K3**2 - 8*K2**2*K4**2 + 344*K2**2*K4 - 2070*K2**2 + 144*K2*K3*K5 + 8*K2*K4*K6 - 1140*K3**2 - 294*K4**2 - 28*K5**2 - 2*K6**2 + 2108
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.523']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.16552', 'vk6.16643', 'vk6.18148', 'vk6.18484', 'vk6.22955', 'vk6.23074', 'vk6.24607', 'vk6.25020', 'vk6.34952', 'vk6.35071', 'vk6.35375', 'vk6.35794', 'vk6.36746', 'vk6.37165', 'vk6.39407', 'vk6.41600', 'vk6.42525', 'vk6.42634', 'vk6.42852', 'vk6.43129', 'vk6.44018', 'vk6.44330', 'vk6.45987', 'vk6.47663', 'vk6.54799', 'vk6.55349', 'vk6.56246', 'vk6.57429', 'vk6.59231', 'vk6.59790', 'vk6.60850', 'vk6.62100', 'vk6.64781', 'vk6.64844', 'vk6.65611', 'vk6.65918', 'vk6.68083', 'vk6.68146', 'vk6.68686', 'vk6.68897']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4O5U2U4U1O6U5U6U3
R3 orbit {'O1O2O3O4O5U2U4U1O6U5U6U3', 'O1O2O3O4U1U5U2O6U4U6O5U3'}
R3 orbit length 2
Gauss code of -K O1O2O3O4O5U3U6U1O6U5U2U4
Gauss code of K* O1O2O3U4O5O4O6U3U1U6U2U5
Gauss code of -K* O1O2O3U2O4O5O6U3U5U1U6U4
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -2 -3 2 0 2 1],[ 2 0 -1 3 1 3 1],[ 3 1 0 3 1 2 1],[-2 -3 -3 0 -1 0 1],[ 0 -1 -1 1 0 1 1],[-2 -3 -2 0 -1 0 1],[-1 -1 -1 -1 -1 -1 0]]
Primitive based matrix [[ 0 2 2 1 0 -2 -3],[-2 0 0 1 -1 -3 -2],[-2 0 0 1 -1 -3 -3],[-1 -1 -1 0 -1 -1 -1],[ 0 1 1 1 0 -1 -1],[ 2 3 3 1 1 0 -1],[ 3 2 3 1 1 1 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-2,-1,0,2,3,0,-1,1,3,2,-1,1,3,3,1,1,1,1,1,1]
Phi over symmetry [-3,-2,0,1,2,2,0,2,3,2,3,1,2,1,1,0,1,1,2,2,0]
Phi of -K [-3,-2,0,1,2,2,0,2,3,2,3,1,2,1,1,0,1,1,2,2,0]
Phi of K* [-2,-2,-1,0,2,3,0,2,1,1,2,2,1,1,3,0,2,3,1,2,0]
Phi of -K* [-3,-2,0,1,2,2,1,1,1,2,3,1,1,3,3,1,1,1,-1,-1,0]
Symmetry type of based matrix c
u-polynomial t^3-t^2-t
Normalized Jones-Krushkal polynomial 13z+27
Enhanced Jones-Krushkal polynomial 13w^2z+27w
Inner characteristic polynomial t^6+41t^4+21t^2+1
Outer characteristic polynomial t^7+63t^5+60t^3+4t
Flat arrow polynomial -6*K1**2 - 2*K1*K2 + K1 + 3*K2 + K3 + 4
2-strand cable arrow polynomial -64*K1**6 + 64*K1**4*K2 - 1360*K1**4 + 32*K1**3*K2*K3 - 192*K1**3*K3 - 1488*K1**2*K2**2 + 96*K1**2*K2*K3**2 - 192*K1**2*K2*K4 + 3760*K1**2*K2 - 496*K1**2*K3**2 - 96*K1**2*K3*K5 - 48*K1**2*K4**2 - 2464*K1**2 - 448*K1*K2**2*K3 + 3136*K1*K2*K3 + 904*K1*K3*K4 + 40*K1*K4*K5 - 88*K2**4 - 160*K2**2*K3**2 - 8*K2**2*K4**2 + 344*K2**2*K4 - 2070*K2**2 + 144*K2*K3*K5 + 8*K2*K4*K6 - 1140*K3**2 - 294*K4**2 - 28*K5**2 - 2*K6**2 + 2108
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {4, 5}, {2, 3}]]
If K is slice False
Contact