Gauss code |
O1O2O3O4O5U2U5U3O6U4U1U6 |
R3 orbit |
{'O1O2O3O4O5U2U5U3O6U4U1U6'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5U6U5U2O6U3U1U4 |
Gauss code of K* |
O1O2O3U4O5O6O4U6U1U3U5U2 |
Gauss code of -K* |
O1O2O3U1O4O5O6U5U3U4U6U2 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -1 -3 0 1 1 2],[ 1 0 -3 0 2 1 2],[ 3 3 0 2 3 1 1],[ 0 0 -2 0 1 0 1],[-1 -2 -3 -1 0 0 1],[-1 -1 -1 0 0 0 0],[-2 -2 -1 -1 -1 0 0]] |
Primitive based matrix |
[[ 0 2 1 1 0 -1 -3],[-2 0 0 -1 -1 -2 -1],[-1 0 0 0 0 -1 -1],[-1 1 0 0 -1 -2 -3],[ 0 1 0 1 0 0 -2],[ 1 2 1 2 0 0 -3],[ 3 1 1 3 2 3 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-1,-1,0,1,3,0,1,1,2,1,0,0,1,1,1,2,3,0,2,3] |
Phi over symmetry |
[-3,-1,0,1,1,2,-1,1,1,3,4,1,0,1,1,0,1,1,0,0,1] |
Phi of -K |
[-3,-1,0,1,1,2,-1,1,1,3,4,1,0,1,1,0,1,1,0,0,1] |
Phi of K* |
[-2,-1,-1,0,1,3,0,1,1,1,4,0,0,0,1,1,1,3,1,1,-1] |
Phi of -K* |
[-3,-1,0,1,1,2,3,2,1,3,1,0,1,2,2,0,1,1,0,0,1] |
Symmetry type of based matrix |
c |
u-polynomial |
t^3-t^2-t |
Normalized Jones-Krushkal polynomial |
2z^2+21z+35 |
Enhanced Jones-Krushkal polynomial |
2w^3z^2+21w^2z+35w |
Inner characteristic polynomial |
t^6+36t^4+15t^2 |
Outer characteristic polynomial |
t^7+52t^5+44t^3+5t |
Flat arrow polynomial |
4*K1**3 - 6*K1**2 - 6*K1*K2 + 3*K2 + 2*K3 + 4 |
2-strand cable arrow polynomial |
-128*K1**6 + 1376*K1**4*K2 - 4736*K1**4 + 384*K1**3*K2*K3 + 64*K1**3*K3*K4 - 1312*K1**3*K3 - 192*K1**2*K2**4 + 672*K1**2*K2**3 + 256*K1**2*K2**2*K4 - 3920*K1**2*K2**2 + 192*K1**2*K2*K3**2 - 1248*K1**2*K2*K4 + 8520*K1**2*K2 - 1472*K1**2*K3**2 - 224*K1**2*K3*K5 - 400*K1**2*K4**2 - 32*K1**2*K5**2 - 4512*K1**2 + 128*K1*K2**3*K3 - 480*K1*K2**2*K3 - 192*K1*K2**2*K5 - 160*K1*K2*K3*K4 - 32*K1*K2*K3*K6 + 6440*K1*K2*K3 + 2560*K1*K3*K4 + 592*K1*K4*K5 + 48*K1*K5*K6 - 32*K2**6 + 32*K2**4*K4 - 376*K2**4 - 144*K2**2*K3**2 - 24*K2**2*K4**2 + 896*K2**2*K4 - 3876*K2**2 + 336*K2*K3*K5 + 48*K2*K4*K6 - 2132*K3**2 - 990*K4**2 - 252*K5**2 - 28*K6**2 + 4348 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{3, 6}, {1, 5}, {2, 4}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{6}, {1, 5}, {2, 4}, {3}]] |
If K is slice |
False |