Gauss code |
O1O2O3O4O5U3U1U2O6U5U4U6 |
R3 orbit |
{'O1O2O3O4O5U3U1U2O6U5U4U6'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5U6U2U1O6U4U5U3 |
Gauss code of K* |
O1O2O3U4O5O6O4U2U3U1U6U5 |
Gauss code of -K* |
O1O2O3U1O4O5O6U3U2U6U4U5 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -3 -1 -2 2 2 2],[ 3 0 1 0 4 3 2],[ 1 -1 0 0 3 2 2],[ 2 0 0 0 2 1 2],[-2 -4 -3 -2 0 0 2],[-2 -3 -2 -1 0 0 1],[-2 -2 -2 -2 -2 -1 0]] |
Primitive based matrix |
[[ 0 2 2 2 -1 -2 -3],[-2 0 2 0 -3 -2 -4],[-2 -2 0 -1 -2 -2 -2],[-2 0 1 0 -2 -1 -3],[ 1 3 2 2 0 0 -1],[ 2 2 2 1 0 0 0],[ 3 4 2 3 1 0 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-2,-2,1,2,3,-2,0,3,2,4,1,2,2,2,2,1,3,0,1,0] |
Phi over symmetry |
[-3,-2,-1,2,2,2,0,1,2,3,4,0,2,1,2,2,2,3,-1,-2,0] |
Phi of -K |
[-3,-2,-1,2,2,2,1,1,1,2,3,1,2,3,2,0,1,1,0,-2,-1] |
Phi of K* |
[-2,-2,-2,1,2,3,-2,-1,1,2,3,0,0,2,1,1,3,2,1,1,1] |
Phi of -K* |
[-3,-2,-1,2,2,2,0,1,2,3,4,0,2,1,2,2,2,3,-1,-2,0] |
Symmetry type of based matrix |
c |
u-polynomial |
t^3-2t^2+t |
Normalized Jones-Krushkal polynomial |
2z^2+7z+7 |
Enhanced Jones-Krushkal polynomial |
-4w^4z^2+6w^3z^2-12w^3z+19w^2z+7w |
Inner characteristic polynomial |
t^6+61t^4+61t^2 |
Outer characteristic polynomial |
t^7+87t^5+179t^3+10t |
Flat arrow polynomial |
8*K1**3 - 6*K1*K2 - 3*K1 + K3 + 1 |
2-strand cable arrow polynomial |
-32*K1**4 - 128*K1**3*K3 - 1024*K1**2*K2**4 + 2496*K1**2*K2**3 - 6624*K1**2*K2**2 - 256*K1**2*K2*K4 + 5072*K1**2*K2 - 96*K1**2*K3**2 - 3096*K1**2 + 1792*K1*K2**3*K3 - 1824*K1*K2**2*K3 - 160*K1*K2**2*K5 - 192*K1*K2*K3*K4 + 5360*K1*K2*K3 + 416*K1*K3*K4 - 576*K2**6 + 512*K2**4*K4 - 2944*K2**4 - 32*K2**3*K6 - 864*K2**2*K3**2 - 120*K2**2*K4**2 + 2136*K2**2*K4 - 902*K2**2 + 288*K2*K3*K5 + 24*K2*K4*K6 - 1128*K3**2 - 284*K4**2 - 2*K6**2 + 2186 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {3, 5}, {2, 4}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {4, 5}, {1, 3}], [{4, 6}, {3, 5}, {1, 2}]] |
If K is slice |
False |