Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.537

Min(phi) over symmetries of the knot is: [-3,-2,-1,2,2,2,0,2,2,2,4,1,1,1,2,1,2,2,0,0,-1]
Flat knots (up to 7 crossings) with same phi are :['6.537']
Arrow polynomial of the knot is: 4*K1**3 - 6*K1**2 - 6*K1*K2 - 2*K1*K3 - 2*K2**2 + 4*K2 + 2*K3 + 2*K4 + 5
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.537']
Outer characteristic polynomial of the knot is: t^7+71t^5+72t^3+5t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.537']
2-strand cable arrow polynomial of the knot is: -864*K1**4 + 128*K1**3*K2*K3 - 704*K1**3*K3 + 160*K1**2*K2**3 - 64*K1**2*K2**2*K3**2 - 2240*K1**2*K2**2 + 96*K1**2*K2*K3**2 + 32*K1**2*K2*K3*K5 - 288*K1**2*K2*K4 + 6840*K1**2*K2 - 896*K1**2*K3**2 - 224*K1**2*K3*K5 - 48*K1**2*K4**2 - 6784*K1**2 + 256*K1*K2**3*K3 - 832*K1*K2**2*K3 - 32*K1*K2**2*K5 + 64*K1*K2*K3**3 - 448*K1*K2*K3*K4 + 6248*K1*K2*K3 + 64*K1*K3**3*K4 - 96*K1*K3**2*K5 - 32*K1*K3*K4*K6 + 2136*K1*K3*K4 + 440*K1*K4*K5 + 48*K1*K5*K6 - 32*K2**6 + 64*K2**4*K4 - 536*K2**4 + 32*K2**3*K3*K5 - 672*K2**2*K3**2 - 56*K2**2*K4**2 + 1032*K2**2*K4 - 32*K2**2*K5**2 - 8*K2**2*K6**2 - 4572*K2**2 - 64*K2*K3**2*K4 - 32*K2*K3*K4*K5 + 1040*K2*K3*K5 + 72*K2*K4*K6 + 40*K2*K5*K7 + 16*K2*K6*K8 - 96*K3**4 - 64*K3**2*K4**2 + 152*K3**2*K6 - 2852*K3**2 + 48*K3*K4*K7 - 8*K4**4 + 16*K4**2*K8 - 1028*K4**2 - 444*K5**2 - 76*K6**2 - 16*K7**2 - 12*K8**2 + 5126
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.537']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.71385', 'vk6.71446', 'vk6.71911', 'vk6.71972', 'vk6.72443', 'vk6.72590', 'vk6.72707', 'vk6.72800', 'vk6.72865', 'vk6.73022', 'vk6.74244', 'vk6.74359', 'vk6.74444', 'vk6.74873', 'vk6.75057', 'vk6.76629', 'vk6.76922', 'vk6.77050', 'vk6.77420', 'vk6.77743', 'vk6.77796', 'vk6.79290', 'vk6.79405', 'vk6.79764', 'vk6.79823', 'vk6.79900', 'vk6.80855', 'vk6.80922', 'vk6.81376', 'vk6.85514', 'vk6.87208', 'vk6.89272']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4O5U3U1U5O6U2U4U6
R3 orbit {'O1O2O3O4O5U3U1U5O6U2U4U6'}
R3 orbit length 1
Gauss code of -K O1O2O3O4O5U6U2U4O6U1U5U3
Gauss code of K* O1O2O3U4O5O6O4U2U5U1U6U3
Gauss code of -K* O1O2O3U1O4O5O6U4U2U6U3U5
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -3 -1 -2 2 2 2],[ 3 0 2 0 4 2 2],[ 1 -2 0 -1 2 1 2],[ 2 0 1 0 2 1 1],[-2 -4 -2 -2 0 0 1],[-2 -2 -1 -1 0 0 0],[-2 -2 -2 -1 -1 0 0]]
Primitive based matrix [[ 0 2 2 2 -1 -2 -3],[-2 0 1 0 -2 -2 -4],[-2 -1 0 0 -2 -1 -2],[-2 0 0 0 -1 -1 -2],[ 1 2 2 1 0 -1 -2],[ 2 2 1 1 1 0 0],[ 3 4 2 2 2 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-2,-2,1,2,3,-1,0,2,2,4,0,2,1,2,1,1,2,1,2,0]
Phi over symmetry [-3,-2,-1,2,2,2,0,2,2,2,4,1,1,1,2,1,2,2,0,0,-1]
Phi of -K [-3,-2,-1,2,2,2,1,0,1,3,3,0,2,3,3,1,1,2,-1,0,0]
Phi of K* [-2,-2,-2,1,2,3,-1,0,1,3,3,0,1,2,1,2,3,3,0,0,1]
Phi of -K* [-3,-2,-1,2,2,2,0,2,2,2,4,1,1,1,2,1,2,2,0,0,-1]
Symmetry type of based matrix c
u-polynomial t^3-2t^2+t
Normalized Jones-Krushkal polynomial 2z^2+21z+35
Enhanced Jones-Krushkal polynomial 2w^3z^2+21w^2z+35w
Inner characteristic polynomial t^6+45t^4+16t^2
Outer characteristic polynomial t^7+71t^5+72t^3+5t
Flat arrow polynomial 4*K1**3 - 6*K1**2 - 6*K1*K2 - 2*K1*K3 - 2*K2**2 + 4*K2 + 2*K3 + 2*K4 + 5
2-strand cable arrow polynomial -864*K1**4 + 128*K1**3*K2*K3 - 704*K1**3*K3 + 160*K1**2*K2**3 - 64*K1**2*K2**2*K3**2 - 2240*K1**2*K2**2 + 96*K1**2*K2*K3**2 + 32*K1**2*K2*K3*K5 - 288*K1**2*K2*K4 + 6840*K1**2*K2 - 896*K1**2*K3**2 - 224*K1**2*K3*K5 - 48*K1**2*K4**2 - 6784*K1**2 + 256*K1*K2**3*K3 - 832*K1*K2**2*K3 - 32*K1*K2**2*K5 + 64*K1*K2*K3**3 - 448*K1*K2*K3*K4 + 6248*K1*K2*K3 + 64*K1*K3**3*K4 - 96*K1*K3**2*K5 - 32*K1*K3*K4*K6 + 2136*K1*K3*K4 + 440*K1*K4*K5 + 48*K1*K5*K6 - 32*K2**6 + 64*K2**4*K4 - 536*K2**4 + 32*K2**3*K3*K5 - 672*K2**2*K3**2 - 56*K2**2*K4**2 + 1032*K2**2*K4 - 32*K2**2*K5**2 - 8*K2**2*K6**2 - 4572*K2**2 - 64*K2*K3**2*K4 - 32*K2*K3*K4*K5 + 1040*K2*K3*K5 + 72*K2*K4*K6 + 40*K2*K5*K7 + 16*K2*K6*K8 - 96*K3**4 - 64*K3**2*K4**2 + 152*K3**2*K6 - 2852*K3**2 + 48*K3*K4*K7 - 8*K4**4 + 16*K4**2*K8 - 1028*K4**2 - 444*K5**2 - 76*K6**2 - 16*K7**2 - 12*K8**2 + 5126
Genus of based matrix 2
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {2, 5}, {4}, {3}, {1}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {3, 5}, {4}, {2}, {1}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {1, 4}, {3}, {2}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {3, 4}, {1, 2}], [{6}, {5}, {4}, {2, 3}, {1}]]
If K is slice False
Contact