Min(phi) over symmetries of the knot is: [-3,-2,-1,2,2,2,0,2,2,2,4,1,1,1,2,1,2,2,0,0,-1] |
Flat knots (up to 7 crossings) with same phi are :['6.537'] |
Arrow polynomial of the knot is: 4*K1**3 - 6*K1**2 - 6*K1*K2 - 2*K1*K3 - 2*K2**2 + 4*K2 + 2*K3 + 2*K4 + 5 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.537'] |
Outer characteristic polynomial of the knot is: t^7+71t^5+72t^3+5t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.537'] |
2-strand cable arrow polynomial of the knot is: -864*K1**4 + 128*K1**3*K2*K3 - 704*K1**3*K3 + 160*K1**2*K2**3 - 64*K1**2*K2**2*K3**2 - 2240*K1**2*K2**2 + 96*K1**2*K2*K3**2 + 32*K1**2*K2*K3*K5 - 288*K1**2*K2*K4 + 6840*K1**2*K2 - 896*K1**2*K3**2 - 224*K1**2*K3*K5 - 48*K1**2*K4**2 - 6784*K1**2 + 256*K1*K2**3*K3 - 832*K1*K2**2*K3 - 32*K1*K2**2*K5 + 64*K1*K2*K3**3 - 448*K1*K2*K3*K4 + 6248*K1*K2*K3 + 64*K1*K3**3*K4 - 96*K1*K3**2*K5 - 32*K1*K3*K4*K6 + 2136*K1*K3*K4 + 440*K1*K4*K5 + 48*K1*K5*K6 - 32*K2**6 + 64*K2**4*K4 - 536*K2**4 + 32*K2**3*K3*K5 - 672*K2**2*K3**2 - 56*K2**2*K4**2 + 1032*K2**2*K4 - 32*K2**2*K5**2 - 8*K2**2*K6**2 - 4572*K2**2 - 64*K2*K3**2*K4 - 32*K2*K3*K4*K5 + 1040*K2*K3*K5 + 72*K2*K4*K6 + 40*K2*K5*K7 + 16*K2*K6*K8 - 96*K3**4 - 64*K3**2*K4**2 + 152*K3**2*K6 - 2852*K3**2 + 48*K3*K4*K7 - 8*K4**4 + 16*K4**2*K8 - 1028*K4**2 - 444*K5**2 - 76*K6**2 - 16*K7**2 - 12*K8**2 + 5126 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.537'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.71385', 'vk6.71446', 'vk6.71911', 'vk6.71972', 'vk6.72443', 'vk6.72590', 'vk6.72707', 'vk6.72800', 'vk6.72865', 'vk6.73022', 'vk6.74244', 'vk6.74359', 'vk6.74444', 'vk6.74873', 'vk6.75057', 'vk6.76629', 'vk6.76922', 'vk6.77050', 'vk6.77420', 'vk6.77743', 'vk6.77796', 'vk6.79290', 'vk6.79405', 'vk6.79764', 'vk6.79823', 'vk6.79900', 'vk6.80855', 'vk6.80922', 'vk6.81376', 'vk6.85514', 'vk6.87208', 'vk6.89272'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3O4O5U3U1U5O6U2U4U6 |
R3 orbit | {'O1O2O3O4O5U3U1U5O6U2U4U6'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3O4O5U6U2U4O6U1U5U3 |
Gauss code of K* | O1O2O3U4O5O6O4U2U5U1U6U3 |
Gauss code of -K* | O1O2O3U1O4O5O6U4U2U6U3U5 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -3 -1 -2 2 2 2],[ 3 0 2 0 4 2 2],[ 1 -2 0 -1 2 1 2],[ 2 0 1 0 2 1 1],[-2 -4 -2 -2 0 0 1],[-2 -2 -1 -1 0 0 0],[-2 -2 -2 -1 -1 0 0]] |
Primitive based matrix | [[ 0 2 2 2 -1 -2 -3],[-2 0 1 0 -2 -2 -4],[-2 -1 0 0 -2 -1 -2],[-2 0 0 0 -1 -1 -2],[ 1 2 2 1 0 -1 -2],[ 2 2 1 1 1 0 0],[ 3 4 2 2 2 0 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-2,-2,-2,1,2,3,-1,0,2,2,4,0,2,1,2,1,1,2,1,2,0] |
Phi over symmetry | [-3,-2,-1,2,2,2,0,2,2,2,4,1,1,1,2,1,2,2,0,0,-1] |
Phi of -K | [-3,-2,-1,2,2,2,1,0,1,3,3,0,2,3,3,1,1,2,-1,0,0] |
Phi of K* | [-2,-2,-2,1,2,3,-1,0,1,3,3,0,1,2,1,2,3,3,0,0,1] |
Phi of -K* | [-3,-2,-1,2,2,2,0,2,2,2,4,1,1,1,2,1,2,2,0,0,-1] |
Symmetry type of based matrix | c |
u-polynomial | t^3-2t^2+t |
Normalized Jones-Krushkal polynomial | 2z^2+21z+35 |
Enhanced Jones-Krushkal polynomial | 2w^3z^2+21w^2z+35w |
Inner characteristic polynomial | t^6+45t^4+16t^2 |
Outer characteristic polynomial | t^7+71t^5+72t^3+5t |
Flat arrow polynomial | 4*K1**3 - 6*K1**2 - 6*K1*K2 - 2*K1*K3 - 2*K2**2 + 4*K2 + 2*K3 + 2*K4 + 5 |
2-strand cable arrow polynomial | -864*K1**4 + 128*K1**3*K2*K3 - 704*K1**3*K3 + 160*K1**2*K2**3 - 64*K1**2*K2**2*K3**2 - 2240*K1**2*K2**2 + 96*K1**2*K2*K3**2 + 32*K1**2*K2*K3*K5 - 288*K1**2*K2*K4 + 6840*K1**2*K2 - 896*K1**2*K3**2 - 224*K1**2*K3*K5 - 48*K1**2*K4**2 - 6784*K1**2 + 256*K1*K2**3*K3 - 832*K1*K2**2*K3 - 32*K1*K2**2*K5 + 64*K1*K2*K3**3 - 448*K1*K2*K3*K4 + 6248*K1*K2*K3 + 64*K1*K3**3*K4 - 96*K1*K3**2*K5 - 32*K1*K3*K4*K6 + 2136*K1*K3*K4 + 440*K1*K4*K5 + 48*K1*K5*K6 - 32*K2**6 + 64*K2**4*K4 - 536*K2**4 + 32*K2**3*K3*K5 - 672*K2**2*K3**2 - 56*K2**2*K4**2 + 1032*K2**2*K4 - 32*K2**2*K5**2 - 8*K2**2*K6**2 - 4572*K2**2 - 64*K2*K3**2*K4 - 32*K2*K3*K4*K5 + 1040*K2*K3*K5 + 72*K2*K4*K6 + 40*K2*K5*K7 + 16*K2*K6*K8 - 96*K3**4 - 64*K3**2*K4**2 + 152*K3**2*K6 - 2852*K3**2 + 48*K3*K4*K7 - 8*K4**4 + 16*K4**2*K8 - 1028*K4**2 - 444*K5**2 - 76*K6**2 - 16*K7**2 - 12*K8**2 + 5126 |
Genus of based matrix | 2 |
Fillings of based matrix | [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {2, 5}, {4}, {3}, {1}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {3, 5}, {4}, {2}, {1}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {1, 4}, {3}, {2}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {3, 4}, {1, 2}], [{6}, {5}, {4}, {2, 3}, {1}]] |
If K is slice | False |