Gauss code |
O1O2O3O4O5U3U4U2O6U5U1U6 |
R3 orbit |
{'O1O2O3O4O5U3U4U2O6U5U1U6'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5U6U5U1O6U4U2U3 |
Gauss code of K* |
O1O2O3U4O5O6O4U6U3U1U2U5 |
Gauss code of -K* |
O1O2O3U1O4O5O6U3U5U6U4U2 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -1 -1 -2 0 2 2],[ 1 0 -1 -2 0 3 2],[ 1 1 0 -1 1 3 1],[ 2 2 1 0 1 2 1],[ 0 0 -1 -1 0 1 1],[-2 -3 -3 -2 -1 0 1],[-2 -2 -1 -1 -1 -1 0]] |
Primitive based matrix |
[[ 0 2 2 0 -1 -1 -2],[-2 0 1 -1 -3 -3 -2],[-2 -1 0 -1 -1 -2 -1],[ 0 1 1 0 -1 0 -1],[ 1 3 1 1 0 1 -1],[ 1 3 2 0 -1 0 -2],[ 2 2 1 1 1 2 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-2,0,1,1,2,-1,1,3,3,2,1,1,2,1,1,0,1,-1,1,2] |
Phi over symmetry |
[-2,-2,0,1,1,2,-1,1,1,2,3,1,0,0,2,1,0,1,-1,-1,0] |
Phi of -K |
[-2,-1,-1,0,2,2,-1,0,1,2,3,1,1,0,1,0,0,2,1,1,-1] |
Phi of K* |
[-2,-2,0,1,1,2,-1,1,1,2,3,1,0,0,2,1,0,1,-1,-1,0] |
Phi of -K* |
[-2,-1,-1,0,2,2,1,2,1,1,2,1,1,1,3,0,2,3,1,1,-1] |
Symmetry type of based matrix |
c |
u-polynomial |
-t^2+2t |
Normalized Jones-Krushkal polynomial |
5z^2+26z+33 |
Enhanced Jones-Krushkal polynomial |
5w^3z^2+26w^2z+33w |
Inner characteristic polynomial |
t^6+39t^4+21t^2+1 |
Outer characteristic polynomial |
t^7+53t^5+50t^3+8t |
Flat arrow polynomial |
8*K1**3 - 10*K1**2 - 8*K1*K2 - 2*K1 + 5*K2 + 2*K3 + 6 |
2-strand cable arrow polynomial |
-704*K1**4*K2**2 + 1920*K1**4*K2 - 3792*K1**4 - 384*K1**3*K2**2*K3 + 1120*K1**3*K2*K3 - 800*K1**3*K3 - 704*K1**2*K2**4 + 3872*K1**2*K2**3 - 128*K1**2*K2**2*K3**2 + 128*K1**2*K2**2*K4 - 12080*K1**2*K2**2 - 1344*K1**2*K2*K4 + 11616*K1**2*K2 - 400*K1**2*K3**2 - 32*K1**2*K3*K5 - 5680*K1**2 + 2304*K1*K2**3*K3 + 480*K1*K2**2*K3*K4 - 2048*K1*K2**2*K3 - 320*K1*K2**2*K5 - 256*K1*K2*K3*K4 + 8880*K1*K2*K3 - 64*K1*K2*K4*K5 + 1184*K1*K3*K4 + 56*K1*K4*K5 - 64*K2**6 + 160*K2**4*K4 - 3160*K2**4 - 32*K2**3*K6 - 1200*K2**2*K3**2 - 384*K2**2*K4**2 + 2448*K2**2*K4 - 3196*K2**2 - 96*K2*K3**2*K4 + 448*K2*K3*K5 + 176*K2*K4*K6 - 1912*K3**2 - 670*K4**2 - 64*K5**2 - 12*K6**2 + 4732 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {4, 5}, {2, 3}], [{4, 6}, {2, 5}, {1, 3}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {4}, {3}, {1, 2}]] |
If K is slice |
False |