Gauss code |
O1O2O3O4O5U4U2U5O6U3U1U6 |
R3 orbit |
{'O1O2O3O4O5U4U2U5O6U3U1U6'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4O5U6U5U3O6U1U4U2 |
Gauss code of K* |
O1O2O3U4O5O6O4U6U2U5U1U3 |
Gauss code of -K* |
O1O2O3U1O4O5O6U4U6U3U5U2 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -1 -2 0 -1 2 2],[ 1 0 -2 1 -1 2 2],[ 2 2 0 2 0 2 1],[ 0 -1 -2 0 -1 1 1],[ 1 1 0 1 0 1 0],[-2 -2 -2 -1 -1 0 0],[-2 -2 -1 -1 0 0 0]] |
Primitive based matrix |
[[ 0 2 2 0 -1 -1 -2],[-2 0 0 -1 0 -2 -1],[-2 0 0 -1 -1 -2 -2],[ 0 1 1 0 -1 -1 -2],[ 1 0 1 1 0 1 0],[ 1 2 2 1 -1 0 -2],[ 2 1 2 2 0 2 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-2,0,1,1,2,0,1,0,2,1,1,1,2,2,1,1,2,-1,0,2] |
Phi over symmetry |
[-2,-2,0,1,1,2,0,1,0,2,1,1,1,2,2,1,1,2,-1,0,2] |
Phi of -K |
[-2,-1,-1,0,2,2,-1,1,0,2,3,1,0,1,1,0,2,3,1,1,0] |
Phi of K* |
[-2,-2,0,1,1,2,0,1,1,2,2,1,1,3,3,0,0,0,-1,-1,1] |
Phi of -K* |
[-2,-1,-1,0,2,2,0,2,2,1,2,1,1,0,1,1,2,2,1,1,0] |
Symmetry type of based matrix |
c |
u-polynomial |
-t^2+2t |
Normalized Jones-Krushkal polynomial |
17z+35 |
Enhanced Jones-Krushkal polynomial |
17w^2z+35w |
Inner characteristic polynomial |
t^6+27t^4+15t^2 |
Outer characteristic polynomial |
t^7+41t^5+42t^3+4t |
Flat arrow polynomial |
-8*K1**2 - 4*K1*K2 - 2*K1*K3 + 2*K1 - 2*K2**2 + 5*K2 + 2*K3 + 2*K4 + 6 |
2-strand cable arrow polynomial |
-128*K1**6 + 480*K1**4*K2 - 2272*K1**4 + 160*K1**3*K2*K3 + 64*K1**3*K3*K4 - 1280*K1**3*K3 + 64*K1**2*K2**3 - 1632*K1**2*K2**2 + 192*K1**2*K2*K3**2 - 416*K1**2*K2*K4 + 6784*K1**2*K2 - 1216*K1**2*K3**2 - 192*K1**2*K3*K5 - 144*K1**2*K4**2 - 5624*K1**2 - 544*K1*K2**2*K3 - 32*K1*K2**2*K5 + 64*K1*K2*K3**3 - 192*K1*K2*K3*K4 - 32*K1*K2*K3*K6 + 5992*K1*K2*K3 - 128*K1*K3**2*K5 + 2152*K1*K3*K4 + 384*K1*K4*K5 + 96*K1*K5*K6 - 96*K2**4 - 352*K2**2*K3**2 - 48*K2**2*K4**2 + 608*K2**2*K4 - 8*K2**2*K6**2 - 4080*K2**2 - 32*K2*K3*K4*K5 + 576*K2*K3*K5 + 56*K2*K4*K6 + 16*K2*K5*K7 + 16*K2*K6*K8 - 64*K3**4 - 32*K3**2*K4**2 + 136*K3**2*K6 - 2580*K3**2 + 48*K3*K4*K7 - 8*K4**4 + 16*K4**2*K8 - 890*K4**2 - 300*K5**2 - 88*K6**2 - 16*K7**2 - 12*K8**2 + 4532 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{3, 6}, {4, 5}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}]] |
If K is slice |
False |