Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.567

Min(phi) over symmetries of the knot is: [-2,-1,0,1,1,1,0,1,0,1,2,1,1,1,1,1,1,1,-1,-1,-1]
Flat knots (up to 7 crossings) with same phi are :['6.567', '7.24818']
Arrow polynomial of the knot is: 4*K1**3 - 10*K1**2 - 4*K1*K2 - K1 + 5*K2 + K3 + 6
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.241', '6.341', '6.542', '6.567', '6.699', '6.713', '6.771', '6.791', '6.1025', '6.1039', '6.1041', '6.1072', '6.1077', '6.1121', '6.1123', '6.1499', '6.1502', '6.1531', '6.1645', '6.1648', '6.1726', '6.1727', '6.1761', '6.1784', '6.1807', '6.1823', '6.1832', '6.1869', '6.1873', '6.1874']
Outer characteristic polynomial of the knot is: t^7+24t^5+30t^3+5t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.567', '7.24818']
2-strand cable arrow polynomial of the knot is: -512*K1**6 - 832*K1**4*K2**2 + 5216*K1**4*K2 - 9360*K1**4 + 1312*K1**3*K2*K3 - 1568*K1**3*K3 - 384*K1**2*K2**4 + 4768*K1**2*K2**3 + 32*K1**2*K2**2*K4 - 15296*K1**2*K2**2 - 1152*K1**2*K2*K4 + 12200*K1**2*K2 - 752*K1**2*K3**2 + 76*K1**2 + 1184*K1*K2**3*K3 - 2080*K1*K2**2*K3 - 256*K1*K2**2*K5 - 192*K1*K2*K3*K4 + 8160*K1*K2*K3 + 472*K1*K3*K4 + 24*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 3352*K2**4 - 32*K2**3*K6 - 592*K2**2*K3**2 - 16*K2**2*K4**2 + 2032*K2**2*K4 - 958*K2**2 + 264*K2*K3*K5 + 16*K2*K4*K6 - 720*K3**2 - 130*K4**2 - 12*K5**2 - 2*K6**2 + 2408
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.567']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.507', 'vk6.598', 'vk6.629', 'vk6.1003', 'vk6.1100', 'vk6.1135', 'vk6.1673', 'vk6.1846', 'vk6.2177', 'vk6.2186', 'vk6.2284', 'vk6.2314', 'vk6.2782', 'vk6.2883', 'vk6.3061', 'vk6.3191', 'vk6.5269', 'vk6.6524', 'vk6.8898', 'vk6.9813', 'vk6.20818', 'vk6.21056', 'vk6.22213', 'vk6.22479', 'vk6.28503', 'vk6.29775', 'vk6.39878', 'vk6.40283', 'vk6.46428', 'vk6.46920', 'vk6.49141', 'vk6.58828']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4O5U4U5U2O6U3U1U6
R3 orbit {'O1O2O3O4O5U4U5U2O6U3U1U6'}
R3 orbit length 1
Gauss code of -K O1O2O3O4O5U6U5U3O6U4U1U2
Gauss code of K* O1O2O3U4O5O6O4U6U3U5U1U2
Gauss code of -K* O1O2O3U1O4O5O6U5U6U3U4U2
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 -1 0 -1 1 2],[ 1 0 -1 1 -1 1 2],[ 1 1 0 1 -1 1 1],[ 0 -1 -1 0 -1 1 1],[ 1 1 1 1 0 1 0],[-1 -1 -1 -1 -1 0 0],[-2 -2 -1 -1 0 0 0]]
Primitive based matrix [[ 0 2 1 0 -1 -1 -1],[-2 0 0 -1 0 -1 -2],[-1 0 0 -1 -1 -1 -1],[ 0 1 1 0 -1 -1 -1],[ 1 0 1 1 0 1 1],[ 1 1 1 1 -1 0 1],[ 1 2 1 1 -1 -1 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,0,1,1,1,0,1,0,1,2,1,1,1,1,1,1,1,-1,-1,-1]
Phi over symmetry [-2,-1,0,1,1,1,0,1,0,1,2,1,1,1,1,1,1,1,-1,-1,-1]
Phi of -K [-1,-1,-1,0,1,2,-1,-1,0,1,3,-1,0,1,2,0,1,1,0,1,1]
Phi of K* [-2,-1,0,1,1,1,1,1,1,2,3,0,1,1,1,0,0,0,-1,-1,-1]
Phi of -K* [-1,-1,-1,0,1,2,-1,-1,1,1,2,-1,1,1,1,1,1,0,1,1,0]
Symmetry type of based matrix c
u-polynomial -t^2+2t
Normalized Jones-Krushkal polynomial 3z^2+22z+33
Enhanced Jones-Krushkal polynomial 3w^3z^2+22w^2z+33w
Inner characteristic polynomial t^6+16t^4+15t^2
Outer characteristic polynomial t^7+24t^5+30t^3+5t
Flat arrow polynomial 4*K1**3 - 10*K1**2 - 4*K1*K2 - K1 + 5*K2 + K3 + 6
2-strand cable arrow polynomial -512*K1**6 - 832*K1**4*K2**2 + 5216*K1**4*K2 - 9360*K1**4 + 1312*K1**3*K2*K3 - 1568*K1**3*K3 - 384*K1**2*K2**4 + 4768*K1**2*K2**3 + 32*K1**2*K2**2*K4 - 15296*K1**2*K2**2 - 1152*K1**2*K2*K4 + 12200*K1**2*K2 - 752*K1**2*K3**2 + 76*K1**2 + 1184*K1*K2**3*K3 - 2080*K1*K2**2*K3 - 256*K1*K2**2*K5 - 192*K1*K2*K3*K4 + 8160*K1*K2*K3 + 472*K1*K3*K4 + 24*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 3352*K2**4 - 32*K2**3*K6 - 592*K2**2*K3**2 - 16*K2**2*K4**2 + 2032*K2**2*K4 - 958*K2**2 + 264*K2*K3*K5 + 16*K2*K4*K6 - 720*K3**2 - 130*K4**2 - 12*K5**2 - 2*K6**2 + 2408
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {4, 5}, {2, 3}], [{2, 6}, {4, 5}, {1, 3}], [{3, 6}, {4, 5}, {1, 2}], [{6}, {4, 5}, {2, 3}, {1}]]
If K is slice False
Contact