Gauss code |
O1O2O3O4U1O5U2O6U3U4U5U6 |
R3 orbit |
{'O1O2O3O4U1O5U2O6U3U4U5U6'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4U5U6U1U2O5U3O6U4 |
Gauss code of K* |
O1O2O3O4U5U6U1U2O5U3O6U4 |
Gauss code of -K* |
Same |
Diagrammatic symmetry type |
- |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -3 -2 -1 1 2 3],[ 3 0 1 2 3 3 2],[ 2 -1 0 1 2 3 3],[ 1 -2 -1 0 1 2 3],[-1 -3 -2 -1 0 1 2],[-2 -3 -3 -2 -1 0 1],[-3 -2 -3 -3 -2 -1 0]] |
Primitive based matrix |
[[ 0 3 2 1 -1 -2 -3],[-3 0 -1 -2 -3 -3 -2],[-2 1 0 -1 -2 -3 -3],[-1 2 1 0 -1 -2 -3],[ 1 3 2 1 0 -1 -2],[ 2 3 3 2 1 0 -1],[ 3 2 3 3 2 1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,-2,-1,1,2,3,1,2,3,3,2,1,2,3,3,1,2,3,1,2,1] |
Phi over symmetry |
[-3,-2,-1,1,2,3,0,0,1,2,4,0,1,1,2,1,1,1,0,0,0] |
Phi of -K |
[-3,-2,-1,1,2,3,0,0,1,2,4,0,1,1,2,1,1,1,0,0,0] |
Phi of K* |
[-3,-2,-1,1,2,3,0,0,1,2,4,0,1,1,2,1,1,1,0,0,0] |
Phi of -K* |
[-3,-2,-1,1,2,3,1,2,3,3,2,1,2,3,3,1,2,3,1,2,1] |
Symmetry type of based matrix |
- |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
4z^2+24z+33 |
Enhanced Jones-Krushkal polynomial |
4w^3z^2+24w^2z+33w |
Inner characteristic polynomial |
t^6+70t^4+45t^2+1 |
Outer characteristic polynomial |
t^7+98t^5+73t^3+7t |
Flat arrow polynomial |
8*K1**3 - 8*K1**2 - 4*K1*K2 - 4*K1 + 4*K2 + 5 |
2-strand cable arrow polynomial |
-384*K1**4*K2**2 + 640*K1**4*K2 - 3264*K1**4 + 128*K1**3*K2*K3 - 192*K1**3*K3 - 512*K1**2*K2**4 + 2304*K1**2*K2**3 - 8096*K1**2*K2**2 - 128*K1**2*K2*K4 + 10912*K1**2*K2 - 32*K1**2*K3**2 - 5896*K1**2 + 768*K1*K2**3*K3 + 64*K1*K2**2*K3*K4 - 1024*K1*K2**2*K3 - 64*K1*K2**2*K5 + 6368*K1*K2*K3 + 160*K1*K3*K4 - 64*K2**6 + 64*K2**4*K4 - 2176*K2**4 - 448*K2**2*K3**2 - 48*K2**2*K4**2 + 1232*K2**2*K4 - 3360*K2**2 + 112*K2*K3*K5 - 1416*K3**2 - 152*K4**2 + 4502 |
Genus of based matrix |
0 |
Fillings of based matrix |
[[{1, 6}, {2, 5}, {3, 4}]] |
If K is slice |
True |