Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.573

Min(phi) over symmetries of the knot is: [-3,-2,0,1,2,2,0,1,2,2,4,1,1,1,2,0,0,0,1,0,-2]
Flat knots (up to 7 crossings) with same phi are :['6.573']
Arrow polynomial of the knot is: 4*K1**3 - 6*K1**2 - 2*K1*K2 - 2*K1 + 3*K2 + 4
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.573', '6.628', '6.703', '6.704', '6.723', '6.796', '6.1083', '6.1099', '6.1315']
Outer characteristic polynomial of the knot is: t^7+73t^5+46t^3
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.573']
2-strand cable arrow polynomial of the knot is: -64*K1**4*K2**2 + 160*K1**4*K2 - 480*K1**4 + 32*K1**3*K2*K3 + 224*K1**2*K2**3 - 1184*K1**2*K2**2 + 1568*K1**2*K2 - 128*K1**2*K3**2 - 16*K1**2*K4**2 - 1144*K1**2 + 96*K1*K2**3*K3 + 1232*K1*K2*K3 + 168*K1*K3*K4 + 24*K1*K4*K5 - 32*K2**6 + 32*K2**4*K4 - 328*K2**4 - 96*K2**2*K3**2 - 8*K2**2*K4**2 + 192*K2**2*K4 - 704*K2**2 + 32*K2*K3*K5 - 412*K3**2 - 110*K4**2 - 12*K5**2 + 956
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.573']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.71342', 'vk6.71393', 'vk6.71419', 'vk6.71856', 'vk6.71882', 'vk6.71919', 'vk6.71941', 'vk6.74198', 'vk6.74322', 'vk6.74343', 'vk6.74967', 'vk6.74987', 'vk6.75613', 'vk6.75806', 'vk6.76371', 'vk6.76534', 'vk6.76558', 'vk6.76941', 'vk6.76995', 'vk6.77017', 'vk6.77072', 'vk6.78596', 'vk6.78797', 'vk6.79233', 'vk6.79368', 'vk6.79792', 'vk6.79812', 'vk6.80242', 'vk6.80719', 'vk6.80844', 'vk6.81282', 'vk6.81486', 'vk6.84053', 'vk6.86016', 'vk6.87067', 'vk6.87077', 'vk6.87749', 'vk6.88050', 'vk6.88212', 'vk6.89402']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U1O5U2O6U4U5U6U3
R3 orbit {'O1O2O3O4U1O5U2U3O6U5U4U6', 'O1O2O3O4U1O5U2O6U4U5U6U3'}
R3 orbit length 2
Gauss code of -K O1O2O3O4U2U5U6U1O5U3O6U4
Gauss code of K* O1O2O3O4U5U6U4U1O5U2O6U3
Gauss code of -K* O1O2O3O4U2O5U3O6U4U1U5U6
Diagrammatic symmetry type c
Flat genus of the diagram 2
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -3 -2 2 0 1 2],[ 3 0 1 3 2 2 1],[ 2 -1 0 3 1 2 2],[-2 -3 -3 0 -2 0 2],[ 0 -2 -1 2 0 1 2],[-1 -2 -2 0 -1 0 1],[-2 -1 -2 -2 -2 -1 0]]
Primitive based matrix [[ 0 2 2 1 0 -2 -3],[-2 0 2 0 -2 -3 -3],[-2 -2 0 -1 -2 -2 -1],[-1 0 1 0 -1 -2 -2],[ 0 2 2 1 0 -1 -2],[ 2 3 2 2 1 0 -1],[ 3 3 1 2 2 1 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-2,-1,0,2,3,-2,0,2,3,3,1,2,2,1,1,2,2,1,2,1]
Phi over symmetry [-3,-2,0,1,2,2,0,1,2,2,4,1,1,1,2,0,0,0,1,0,-2]
Phi of -K [-3,-2,0,1,2,2,0,1,2,2,4,1,1,1,2,0,0,0,1,0,-2]
Phi of K* [-2,-2,-1,0,2,3,-2,0,0,2,4,1,0,1,2,0,1,2,1,1,0]
Phi of -K* [-3,-2,0,1,2,2,1,2,2,1,3,1,2,2,3,1,2,2,1,0,-2]
Symmetry type of based matrix c
u-polynomial t^3-t^2-t
Normalized Jones-Krushkal polynomial 9z+19
Enhanced Jones-Krushkal polynomial -2w^3z+11w^2z+19w
Inner characteristic polynomial t^6+51t^4+11t^2
Outer characteristic polynomial t^7+73t^5+46t^3
Flat arrow polynomial 4*K1**3 - 6*K1**2 - 2*K1*K2 - 2*K1 + 3*K2 + 4
2-strand cable arrow polynomial -64*K1**4*K2**2 + 160*K1**4*K2 - 480*K1**4 + 32*K1**3*K2*K3 + 224*K1**2*K2**3 - 1184*K1**2*K2**2 + 1568*K1**2*K2 - 128*K1**2*K3**2 - 16*K1**2*K4**2 - 1144*K1**2 + 96*K1*K2**3*K3 + 1232*K1*K2*K3 + 168*K1*K3*K4 + 24*K1*K4*K5 - 32*K2**6 + 32*K2**4*K4 - 328*K2**4 - 96*K2**2*K3**2 - 8*K2**2*K4**2 + 192*K2**2*K4 - 704*K2**2 + 32*K2*K3*K5 - 412*K3**2 - 110*K4**2 - 12*K5**2 + 956
Genus of based matrix 1
Fillings of based matrix [[{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}]]
If K is slice False
Contact