Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.575

Min(phi) over symmetries of the knot is: [-3,-2,0,0,2,3,-1,0,2,2,4,1,2,1,2,0,0,1,1,2,0]
Flat knots (up to 7 crossings) with same phi are :['6.575']
Arrow polynomial of the knot is: 8*K1**3 - 4*K1**2 - 4*K1*K2 - 4*K1 + 2*K2 + 3
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.206', '6.236', '6.575', '6.580', '6.613', '6.619', '6.810', '6.819', '6.831', '6.838', '6.957', '6.1018', '6.1028', '6.1046', '6.1073', '6.1279', '6.1507', '6.1532', '6.1556', '6.1639', '6.1688', '6.1924', '6.1931']
Outer characteristic polynomial of the knot is: t^7+83t^5+71t^3+9t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.575']
2-strand cable arrow polynomial of the knot is: -128*K1**4*K2**2 + 1216*K1**4*K2 - 3392*K1**4 + 160*K1**3*K2*K3 - 896*K1**3*K3 + 384*K1**2*K2**5 - 1152*K1**2*K2**4 + 3136*K1**2*K2**3 - 64*K1**2*K2**2*K3**2 - 8624*K1**2*K2**2 + 64*K1**2*K2*K3**2 - 640*K1**2*K2*K4 + 10136*K1**2*K2 - 224*K1**2*K3**2 - 4892*K1**2 + 1120*K1*K2**3*K3 + 128*K1*K2**2*K3*K4 - 1536*K1*K2**2*K3 - 64*K1*K2**2*K5 - 192*K1*K2*K3*K4 + 6800*K1*K2*K3 + 328*K1*K3*K4 - 320*K2**6 + 96*K2**4*K4 - 2288*K2**4 - 608*K2**2*K3**2 - 64*K2**2*K4**2 + 1560*K2**2*K4 - 2584*K2**2 + 216*K2*K3*K5 - 1276*K3**2 - 112*K4**2 + 3710
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.575']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.73706', 'vk6.73825', 'vk6.74197', 'vk6.74809', 'vk6.75631', 'vk6.75818', 'vk6.76362', 'vk6.76872', 'vk6.78610', 'vk6.78807', 'vk6.79230', 'vk6.79705', 'vk6.80248', 'vk6.80387', 'vk6.80711', 'vk6.81071', 'vk6.81606', 'vk6.81788', 'vk6.81927', 'vk6.82175', 'vk6.82295', 'vk6.82653', 'vk6.83197', 'vk6.84057', 'vk6.84206', 'vk6.84694', 'vk6.85013', 'vk6.86007', 'vk6.87767', 'vk6.88200', 'vk6.89405', 'vk6.89596']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U1O5U2O6U5U3U4U6
R3 orbit {'O1O2O3O4U1O5U2O6U5U3U4U6'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U5U1U2U6O5U3O6U4
Gauss code of K* O1O2O3O4U5U6U2U3O5U1O6U4
Gauss code of -K* O1O2O3O4U1O5U4O6U2U3U5U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -3 -2 0 2 0 3],[ 3 0 1 2 3 1 2],[ 2 -1 0 2 3 1 3],[ 0 -2 -2 0 1 0 3],[-2 -3 -3 -1 0 0 2],[ 0 -1 -1 0 0 0 1],[-3 -2 -3 -3 -2 -1 0]]
Primitive based matrix [[ 0 3 2 0 0 -2 -3],[-3 0 -2 -1 -3 -3 -2],[-2 2 0 0 -1 -3 -3],[ 0 1 0 0 0 -1 -1],[ 0 3 1 0 0 -2 -2],[ 2 3 3 1 2 0 -1],[ 3 2 3 1 2 1 0]]
If based matrix primitive True
Phi of primitive based matrix [-3,-2,0,0,2,3,2,1,3,3,2,0,1,3,3,0,1,1,2,2,1]
Phi over symmetry [-3,-2,0,0,2,3,-1,0,2,2,4,1,2,1,2,0,0,1,1,2,0]
Phi of -K [-3,-2,0,0,2,3,0,1,2,2,4,0,1,1,2,0,1,0,2,2,-1]
Phi of K* [-3,-2,0,0,2,3,-1,0,2,2,4,1,2,1,2,0,0,1,1,2,0]
Phi of -K* [-3,-2,0,0,2,3,1,1,2,3,2,1,2,3,3,0,0,1,1,3,2]
Symmetry type of based matrix c
u-polynomial 0
Normalized Jones-Krushkal polynomial 5z^2+24z+29
Enhanced Jones-Krushkal polynomial -2w^4z^2+7w^3z^2+24w^2z+29w
Inner characteristic polynomial t^6+57t^4+23t^2
Outer characteristic polynomial t^7+83t^5+71t^3+9t
Flat arrow polynomial 8*K1**3 - 4*K1**2 - 4*K1*K2 - 4*K1 + 2*K2 + 3
2-strand cable arrow polynomial -128*K1**4*K2**2 + 1216*K1**4*K2 - 3392*K1**4 + 160*K1**3*K2*K3 - 896*K1**3*K3 + 384*K1**2*K2**5 - 1152*K1**2*K2**4 + 3136*K1**2*K2**3 - 64*K1**2*K2**2*K3**2 - 8624*K1**2*K2**2 + 64*K1**2*K2*K3**2 - 640*K1**2*K2*K4 + 10136*K1**2*K2 - 224*K1**2*K3**2 - 4892*K1**2 + 1120*K1*K2**3*K3 + 128*K1*K2**2*K3*K4 - 1536*K1*K2**2*K3 - 64*K1*K2**2*K5 - 192*K1*K2*K3*K4 + 6800*K1*K2*K3 + 328*K1*K3*K4 - 320*K2**6 + 96*K2**4*K4 - 2288*K2**4 - 608*K2**2*K3**2 - 64*K2**2*K4**2 + 1560*K2**2*K4 - 2584*K2**2 + 216*K2*K3*K5 - 1276*K3**2 - 112*K4**2 + 3710
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {3, 5}, {2, 4}], [{2, 6}, {4, 5}, {1, 3}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}]]
If K is slice False
Contact