Gauss code |
O1O2O3O4U1O5U2O6U5U4U6U3 |
R3 orbit |
{'O1O2O3O4U1O5U2O6U5U4U6U3'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4U2U5U1U6O5U3O6U4 |
Gauss code of K* |
O1O2O3O4U5U6U4U2O5U1O6U3 |
Gauss code of -K* |
O1O2O3O4U2O5U4O6U3U1U5U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -3 -2 2 1 0 2],[ 3 0 1 3 2 1 1],[ 2 -1 0 3 2 1 2],[-2 -3 -3 0 -1 -1 2],[-1 -2 -2 1 0 0 2],[ 0 -1 -1 1 0 0 1],[-2 -1 -2 -2 -2 -1 0]] |
Primitive based matrix |
[[ 0 2 2 1 0 -2 -3],[-2 0 2 -1 -1 -3 -3],[-2 -2 0 -2 -1 -2 -1],[-1 1 2 0 0 -2 -2],[ 0 1 1 0 0 -1 -1],[ 2 3 2 2 1 0 -1],[ 3 3 1 2 1 1 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-2,-1,0,2,3,-2,1,1,3,3,2,1,2,1,0,2,2,1,1,1] |
Phi over symmetry |
[-3,-2,0,1,2,2,0,2,2,2,4,1,1,1,2,1,1,1,0,-1,-2] |
Phi of -K |
[-3,-2,0,1,2,2,0,2,2,2,4,1,1,1,2,1,1,1,0,-1,-2] |
Phi of K* |
[-2,-2,-1,0,2,3,-2,-1,1,2,4,0,1,1,2,1,1,2,1,2,0] |
Phi of -K* |
[-3,-2,0,1,2,2,1,1,2,1,3,1,2,2,3,0,1,1,2,1,-2] |
Symmetry type of based matrix |
c |
u-polynomial |
t^3-t^2-t |
Normalized Jones-Krushkal polynomial |
2z^2+19z+31 |
Enhanced Jones-Krushkal polynomial |
2w^3z^2+19w^2z+31w |
Inner characteristic polynomial |
t^6+45t^4+8t^2 |
Outer characteristic polynomial |
t^7+67t^5+47t^3+4t |
Flat arrow polynomial |
8*K1**3 - 10*K1**2 - 6*K1*K2 - 3*K1 + 5*K2 + K3 + 6 |
2-strand cable arrow polynomial |
-64*K1**4*K2**2 + 288*K1**4*K2 - 1168*K1**4 + 160*K1**3*K2*K3 - 288*K1**3*K3 + 512*K1**2*K2**3 - 3936*K1**2*K2**2 + 32*K1**2*K2*K3**2 - 256*K1**2*K2*K4 + 7208*K1**2*K2 - 144*K1**2*K3**2 - 5632*K1**2 + 192*K1*K2**3*K3 - 1248*K1*K2**2*K3 - 96*K1*K2**2*K5 - 64*K1*K2*K3*K4 + 5688*K1*K2*K3 + 736*K1*K3*K4 + 32*K1*K4*K5 - 64*K2**6 + 96*K2**4*K4 - 1016*K2**4 - 32*K2**3*K6 - 256*K2**2*K3**2 - 40*K2**2*K4**2 + 1432*K2**2*K4 - 4050*K2**2 - 32*K2*K3**2*K4 + 232*K2*K3*K5 + 40*K2*K4*K6 + 8*K3**2*K6 - 1848*K3**2 - 498*K4**2 - 56*K5**2 - 6*K6**2 + 4136 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {5}, {1, 4}, {2}], [{4, 6}, {3, 5}, {1, 2}]] |
If K is slice |
False |