| Gauss code |
O1O2O3O4U1O5U3O6U5U6U4U2 |
| R3 orbit |
{'O1O2O3O4U1O5U3O6U5U6U4U2'} |
| R3 orbit length |
1 |
| Gauss code of -K |
O1O2O3O4U3U1U5U6O5U2O6U4 |
| Gauss code of K* |
O1O2O3O4U5U4U6U3O5U1O6U2 |
| Gauss code of -K* |
O1O2O3O4U3O5U4O6U2U5U1U6 |
| Diagrammatic symmetry type |
c |
| Flat genus of the diagram |
3 |
| If K is checkerboard colorable |
False |
| If K is almost classical |
False |
| Based matrix from Gauss code |
[[ 0 -3 1 -1 2 0 1],[ 3 0 3 1 2 1 0],[-1 -3 0 -2 1 0 1],[ 1 -1 2 0 2 1 1],[-2 -2 -1 -2 0 -1 1],[ 0 -1 0 -1 1 0 1],[-1 0 -1 -1 -1 -1 0]] |
| Primitive based matrix |
[[ 0 2 1 1 0 -1 -3],[-2 0 1 -1 -1 -2 -2],[-1 -1 0 -1 -1 -1 0],[-1 1 1 0 0 -2 -3],[ 0 1 1 0 0 -1 -1],[ 1 2 1 2 1 0 -1],[ 3 2 0 3 1 1 0]] |
| If based matrix primitive |
True |
| Phi of primitive based matrix |
[-2,-1,-1,0,1,3,-1,1,1,2,2,1,1,1,0,0,2,3,1,1,1] |
| Phi over symmetry |
[-3,-1,0,1,1,2,1,1,0,3,2,1,1,2,2,1,0,1,-1,-1,1] |
| Phi of -K |
[-3,-1,0,1,1,2,1,2,1,4,3,0,0,1,1,1,0,1,-1,0,2] |
| Phi of K* |
[-2,-1,-1,0,1,3,0,2,1,1,3,1,1,0,1,0,1,4,0,2,1] |
| Phi of -K* |
[-3,-1,0,1,1,2,1,1,0,3,2,1,1,2,2,1,0,1,-1,-1,1] |
| Symmetry type of based matrix |
c |
| u-polynomial |
t^3-t^2-t |
| Normalized Jones-Krushkal polynomial |
3z^2+24z+37 |
| Enhanced Jones-Krushkal polynomial |
3w^3z^2+24w^2z+37w |
| Inner characteristic polynomial |
t^6+30t^4+21t^2+1 |
| Outer characteristic polynomial |
t^7+46t^5+52t^3+11t |
| Flat arrow polynomial |
8*K1**3 - 10*K1**2 - 6*K1*K2 - 3*K1 + 5*K2 + K3 + 6 |
| 2-strand cable arrow polynomial |
-192*K1**6 + 256*K1**4*K2**3 - 1024*K1**4*K2**2 + 3328*K1**4*K2 - 4464*K1**4 + 320*K1**3*K2*K3 - 1216*K1**3*K3 - 448*K1**2*K2**4 + 2752*K1**2*K2**3 - 9136*K1**2*K2**2 + 128*K1**2*K2*K3**2 - 416*K1**2*K2*K4 + 12312*K1**2*K2 - 304*K1**2*K3**2 - 6812*K1**2 + 384*K1*K2**3*K3 + 32*K1*K2**2*K3*K4 - 2752*K1*K2**2*K3 - 160*K1*K2**2*K5 - 192*K1*K2*K3*K4 + 9024*K1*K2*K3 - 32*K1*K2*K4*K5 + 872*K1*K3*K4 + 32*K1*K4*K5 + 8*K1*K5*K6 - 64*K2**6 + 96*K2**4*K4 - 1960*K2**4 - 32*K2**3*K6 - 304*K2**2*K3**2 - 40*K2**2*K4**2 + 2288*K2**2*K4 - 5322*K2**2 + 288*K2*K3*K5 + 32*K2*K4*K6 - 2244*K3**2 - 522*K4**2 - 40*K5**2 - 6*K6**2 + 5528 |
| Genus of based matrix |
1 |
| Fillings of based matrix |
[[{4, 6}, {2, 5}, {1, 3}]] |
| If K is slice |
False |