Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.588

Min(phi) over symmetries of the knot is: [-3,0,0,0,1,2,1,1,2,3,1,-1,-1,0,1,1,1,1,1,2,2]
Flat knots (up to 7 crossings) with same phi are :['6.588']
Arrow polynomial of the knot is: 12*K1**3 - 6*K1**2 - 6*K1*K2 - 6*K1 + 3*K2 + 4
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.212', '6.358', '6.588', '6.589', '6.603', '6.990']
Outer characteristic polynomial of the knot is: t^7+45t^5+77t^3
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.588']
2-strand cable arrow polynomial of the knot is: -64*K1**4*K2**2 + 160*K1**4*K2 - 496*K1**4 + 96*K1**3*K2*K3 - 128*K1**2*K2**4 + 352*K1**2*K2**3 - 1888*K1**2*K2**2 + 1968*K1**2*K2 - 48*K1**2*K3**2 - 32*K1**2*K4**2 - 1328*K1**2 + 320*K1*K2**3*K3 + 1632*K1*K2*K3 + 160*K1*K3*K4 + 32*K1*K4*K5 - 224*K2**6 + 160*K2**4*K4 - 1048*K2**4 - 384*K2**2*K3**2 - 72*K2**2*K4**2 + 712*K2**2*K4 - 532*K2**2 + 160*K2*K3*K5 + 32*K2*K4*K6 - 488*K3**2 - 214*K4**2 - 24*K5**2 - 4*K6**2 + 1188
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.588']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.10139', 'vk6.10198', 'vk6.10341', 'vk6.10426', 'vk6.17667', 'vk6.17714', 'vk6.24230', 'vk6.24277', 'vk6.24798', 'vk6.25255', 'vk6.29918', 'vk6.29963', 'vk6.30026', 'vk6.30077', 'vk6.30976', 'vk6.31103', 'vk6.32156', 'vk6.32275', 'vk6.36592', 'vk6.36980', 'vk6.43591', 'vk6.43701', 'vk6.51703', 'vk6.51724', 'vk6.52056', 'vk6.52138', 'vk6.55697', 'vk6.55754', 'vk6.60263', 'vk6.60325', 'vk6.60647', 'vk6.60988', 'vk6.63332', 'vk6.63357', 'vk6.63378', 'vk6.63399', 'vk6.65446', 'vk6.65780', 'vk6.68543', 'vk6.68574']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U1O5U4O6U5U3U6U2
R3 orbit {'O1O2O3O4U1U3O5O6U4U5U6U2', 'O1O2O3O4U1O5U4O6U5U3U6U2'}
R3 orbit length 2
Gauss code of -K O1O2O3O4U3U5U2U6O5U1O6U4
Gauss code of K* O1O2O3O4U5U4U2U6O5U1O6U3
Gauss code of -K* O1O2O3O4U2O5U4O6U5U3U1U6
Diagrammatic symmetry type c
Flat genus of the diagram 2
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -3 1 0 0 0 2],[ 3 0 3 2 1 1 1],[-1 -3 0 -1 -1 0 2],[ 0 -2 1 0 -1 1 2],[ 0 -1 1 1 0 1 1],[ 0 -1 0 -1 -1 0 1],[-2 -1 -2 -2 -1 -1 0]]
Primitive based matrix [[ 0 2 1 0 0 0 -3],[-2 0 -2 -1 -1 -2 -1],[-1 2 0 0 -1 -1 -3],[ 0 1 0 0 -1 -1 -1],[ 0 1 1 1 0 1 -1],[ 0 2 1 1 -1 0 -2],[ 3 1 3 1 1 2 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,0,0,0,3,2,1,1,2,1,0,1,1,3,1,1,1,-1,1,2]
Phi over symmetry [-3,0,0,0,1,2,1,1,2,3,1,-1,-1,0,1,1,1,1,1,2,2]
Phi of -K [-3,0,0,0,1,2,1,2,2,1,4,-1,1,0,0,1,1,1,0,1,-1]
Phi of K* [-2,-1,0,0,0,3,-1,0,1,1,4,0,0,1,1,-1,1,1,1,2,2]
Phi of -K* [-3,0,0,0,1,2,1,1,2,3,1,-1,-1,0,1,1,1,1,1,2,2]
Symmetry type of based matrix c
u-polynomial t^3-t^2-t
Normalized Jones-Krushkal polynomial 7z+15
Enhanced Jones-Krushkal polynomial -6w^3z+13w^2z+15w
Inner characteristic polynomial t^6+31t^4+20t^2
Outer characteristic polynomial t^7+45t^5+77t^3
Flat arrow polynomial 12*K1**3 - 6*K1**2 - 6*K1*K2 - 6*K1 + 3*K2 + 4
2-strand cable arrow polynomial -64*K1**4*K2**2 + 160*K1**4*K2 - 496*K1**4 + 96*K1**3*K2*K3 - 128*K1**2*K2**4 + 352*K1**2*K2**3 - 1888*K1**2*K2**2 + 1968*K1**2*K2 - 48*K1**2*K3**2 - 32*K1**2*K4**2 - 1328*K1**2 + 320*K1*K2**3*K3 + 1632*K1*K2*K3 + 160*K1*K3*K4 + 32*K1*K4*K5 - 224*K2**6 + 160*K2**4*K4 - 1048*K2**4 - 384*K2**2*K3**2 - 72*K2**2*K4**2 + 712*K2**2*K4 - 532*K2**2 + 160*K2*K3*K5 + 32*K2*K4*K6 - 488*K3**2 - 214*K4**2 - 24*K5**2 - 4*K6**2 + 1188
Genus of based matrix 1
Fillings of based matrix [[{4, 6}, {1, 5}, {2, 3}]]
If K is slice False
Contact