Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.592

Min(phi) over symmetries of the knot is: [-3,-2,0,1,2,2,0,2,2,2,4,1,1,1,2,1,2,2,1,0,-2]
Flat knots (up to 7 crossings) with same phi are :['6.592']
Arrow polynomial of the knot is: -6*K1**2 - 2*K1*K2 + K1 + 3*K2 + K3 + 4
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.323', '6.380', '6.444', '6.472', '6.523', '6.579', '6.592', '6.595', '6.609', '6.614', '6.620', '6.644', '6.648', '6.669', '6.671', '6.681', '6.693', '6.724', '6.725', '6.757', '6.766', '6.785', '6.786', '6.797', '6.798', '6.816', '6.833', '6.972', '6.978', '6.1056', '6.1064', '6.1066', '6.1087', '6.1094', '6.1273', '6.1277', '6.1282', '6.1295', '6.1300', '6.1313', '6.1344', '6.1353', '6.1354']
Outer characteristic polynomial of the knot is: t^7+71t^5+35t^3
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.592']
2-strand cable arrow polynomial of the knot is: 64*K1**4*K2 - 448*K1**4 - 384*K1**2*K2**2 + 1320*K1**2*K2 - 64*K1**2*K3**2 - 1120*K1**2 + 840*K1*K2*K3 + 216*K1*K3*K4 - 40*K2**4 - 64*K2**2*K3**2 - 8*K2**2*K4**2 + 152*K2**2*K4 - 910*K2**2 + 80*K2*K3*K5 + 8*K2*K4*K6 - 416*K3**2 - 158*K4**2 - 24*K5**2 - 2*K6**2 + 956
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.592']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.71362', 'vk6.71421', 'vk6.71888', 'vk6.71947', 'vk6.72464', 'vk6.72613', 'vk6.72731', 'vk6.72825', 'vk6.72887', 'vk6.73045', 'vk6.73346', 'vk6.73509', 'vk6.74261', 'vk6.74385', 'vk6.74424', 'vk6.75038', 'vk6.75516', 'vk6.75831', 'vk6.76438', 'vk6.76609', 'vk6.77027', 'vk6.77768', 'vk6.77817', 'vk6.78236', 'vk6.78483', 'vk6.78628', 'vk6.78823', 'vk6.79313', 'vk6.79423', 'vk6.79841', 'vk6.79873', 'vk6.80262', 'vk6.80778', 'vk6.80873', 'vk6.85142', 'vk6.86529', 'vk6.87217', 'vk6.87341', 'vk6.89274', 'vk6.89443']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U2O5U1O6U4U5U6U3
R3 orbit {'O1O2O3O4U2O5U1O6U4U5U6U3', 'O1O2O3O4U2O5U1U3O6U5U4U6'}
R3 orbit length 2
Gauss code of -K O1O2O3O4U2U5U6U1O5U4O6U3
Gauss code of K* O1O2O3O4U5U6U4U1O6U2O5U3
Gauss code of -K* O1O2O3O4U2O5U3O6U4U1U6U5
Diagrammatic symmetry type c
Flat genus of the diagram 2
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -3 -2 2 0 1 2],[ 3 0 0 4 2 2 2],[ 2 0 0 2 1 1 1],[-2 -4 -2 0 -2 0 2],[ 0 -2 -1 2 0 1 2],[-1 -2 -1 0 -1 0 1],[-2 -2 -1 -2 -2 -1 0]]
Primitive based matrix [[ 0 2 2 1 0 -2 -3],[-2 0 2 0 -2 -2 -4],[-2 -2 0 -1 -2 -1 -2],[-1 0 1 0 -1 -1 -2],[ 0 2 2 1 0 -1 -2],[ 2 2 1 1 1 0 0],[ 3 4 2 2 2 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-2,-1,0,2,3,-2,0,2,2,4,1,2,1,2,1,1,2,1,2,0]
Phi over symmetry [-3,-2,0,1,2,2,0,2,2,2,4,1,1,1,2,1,2,2,1,0,-2]
Phi of -K [-3,-2,0,1,2,2,1,1,2,1,3,1,2,2,3,0,0,0,1,0,-2]
Phi of K* [-2,-2,-1,0,2,3,-2,0,0,3,3,1,0,2,1,0,2,2,1,1,1]
Phi of -K* [-3,-2,0,1,2,2,0,2,2,2,4,1,1,1,2,1,2,2,1,0,-2]
Symmetry type of based matrix c
u-polynomial t^3-t^2-t
Normalized Jones-Krushkal polynomial 9z+19
Enhanced Jones-Krushkal polynomial 9w^2z+19w
Inner characteristic polynomial t^6+49t^4
Outer characteristic polynomial t^7+71t^5+35t^3
Flat arrow polynomial -6*K1**2 - 2*K1*K2 + K1 + 3*K2 + K3 + 4
2-strand cable arrow polynomial 64*K1**4*K2 - 448*K1**4 - 384*K1**2*K2**2 + 1320*K1**2*K2 - 64*K1**2*K3**2 - 1120*K1**2 + 840*K1*K2*K3 + 216*K1*K3*K4 - 40*K2**4 - 64*K2**2*K3**2 - 8*K2**2*K4**2 + 152*K2**2*K4 - 910*K2**2 + 80*K2*K3*K5 + 8*K2*K4*K6 - 416*K3**2 - 158*K4**2 - 24*K5**2 - 2*K6**2 + 956
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{3, 6}, {1, 5}, {2, 4}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {5}, {3}, {1, 2}]]
If K is slice False
Contact