Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.593

Min(phi) over symmetries of the knot is: [-3,-2,0,1,2,2,0,2,1,2,4,1,1,1,2,1,2,2,0,-1,-1]
Flat knots (up to 7 crossings) with same phi are :['6.593']
Arrow polynomial of the knot is: -10*K1**2 - 2*K1*K2 + K1 + 5*K2 + K3 + 6
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.574', '6.593', '6.604', '6.649', '6.650', '6.673', '6.690', '6.783', '6.973', '6.985', '6.1033', '6.1035']
Outer characteristic polynomial of the knot is: t^7+65t^5+48t^3+6t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.593']
2-strand cable arrow polynomial of the knot is: -192*K1**4*K2**2 + 768*K1**4*K2 - 1936*K1**4 + 160*K1**3*K2*K3 + 32*K1**3*K3*K4 - 288*K1**3*K3 + 160*K1**2*K2**3 - 3216*K1**2*K2**2 - 320*K1**2*K2*K4 + 7064*K1**2*K2 - 272*K1**2*K3**2 - 32*K1**2*K4**2 - 5368*K1**2 - 160*K1*K2**2*K3 + 4264*K1*K2*K3 + 776*K1*K3*K4 + 56*K1*K4*K5 - 152*K2**4 - 48*K2**2*K3**2 - 8*K2**2*K4**2 + 408*K2**2*K4 - 3766*K2**2 + 64*K2*K3*K5 + 8*K2*K4*K6 - 1468*K3**2 - 418*K4**2 - 44*K5**2 - 2*K6**2 + 3928
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.593']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.17096', 'vk6.17337', 'vk6.20591', 'vk6.21999', 'vk6.23485', 'vk6.23822', 'vk6.28056', 'vk6.29514', 'vk6.35626', 'vk6.36069', 'vk6.39463', 'vk6.41664', 'vk6.42996', 'vk6.43306', 'vk6.46051', 'vk6.47719', 'vk6.55247', 'vk6.55497', 'vk6.57461', 'vk6.58627', 'vk6.59651', 'vk6.59997', 'vk6.62136', 'vk6.63100', 'vk6.65043', 'vk6.65240', 'vk6.66987', 'vk6.67851', 'vk6.68310', 'vk6.68458', 'vk6.69605', 'vk6.70297']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U2O5U1O6U4U6U5U3
R3 orbit {'O1O2O3O4U2O5U1O6U4U6U5U3'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U2U5U6U1O6U4O5U3
Gauss code of K* O1O2O3O4U5U6U4U1O6U3O5U2
Gauss code of -K* O1O2O3O4U3O5U2O6U4U1U6U5
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -3 -2 2 0 2 1],[ 3 0 0 4 2 2 1],[ 2 0 0 2 1 1 1],[-2 -4 -2 0 -2 1 1],[ 0 -2 -1 2 0 2 1],[-2 -2 -1 -1 -2 0 0],[-1 -1 -1 -1 -1 0 0]]
Primitive based matrix [[ 0 2 2 1 0 -2 -3],[-2 0 1 1 -2 -2 -4],[-2 -1 0 0 -2 -1 -2],[-1 -1 0 0 -1 -1 -1],[ 0 2 2 1 0 -1 -2],[ 2 2 1 1 1 0 0],[ 3 4 2 1 2 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-2,-1,0,2,3,-1,-1,2,2,4,0,2,1,2,1,1,1,1,2,0]
Phi over symmetry [-3,-2,0,1,2,2,0,2,1,2,4,1,1,1,2,1,2,2,0,-1,-1]
Phi of -K [-3,-2,0,1,2,2,1,1,3,1,3,1,2,2,3,0,0,0,2,1,-1]
Phi of K* [-2,-2,-1,0,2,3,-1,1,0,3,3,2,0,2,1,0,2,3,1,1,1]
Phi of -K* [-3,-2,0,1,2,2,0,2,1,2,4,1,1,1,2,1,2,2,0,-1,-1]
Symmetry type of based matrix c
u-polynomial t^3-t^2-t
Normalized Jones-Krushkal polynomial 2z^2+21z+35
Enhanced Jones-Krushkal polynomial 2w^3z^2+21w^2z+35w
Inner characteristic polynomial t^6+43t^4+15t^2+1
Outer characteristic polynomial t^7+65t^5+48t^3+6t
Flat arrow polynomial -10*K1**2 - 2*K1*K2 + K1 + 5*K2 + K3 + 6
2-strand cable arrow polynomial -192*K1**4*K2**2 + 768*K1**4*K2 - 1936*K1**4 + 160*K1**3*K2*K3 + 32*K1**3*K3*K4 - 288*K1**3*K3 + 160*K1**2*K2**3 - 3216*K1**2*K2**2 - 320*K1**2*K2*K4 + 7064*K1**2*K2 - 272*K1**2*K3**2 - 32*K1**2*K4**2 - 5368*K1**2 - 160*K1*K2**2*K3 + 4264*K1*K2*K3 + 776*K1*K3*K4 + 56*K1*K4*K5 - 152*K2**4 - 48*K2**2*K3**2 - 8*K2**2*K4**2 + 408*K2**2*K4 - 3766*K2**2 + 64*K2*K3*K5 + 8*K2*K4*K6 - 1468*K3**2 - 418*K4**2 - 44*K5**2 - 2*K6**2 + 3928
Genus of based matrix 2
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{1, 6}, {5}, {4}, {3}, {2}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{3, 6}, {5}, {4}, {2}, {1}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {2, 5}, {4}, {3}, {1}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {3, 4}, {1, 2}], [{6}, {5}, {4}, {1, 3}, {2}]]
If K is slice False
Contact