Gauss code |
O1O2O3O4U2O5U1O6U5U6U3U4 |
R3 orbit |
{'O1O2O3O4U2O5U1O6U5U6U3U4'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4U1U2U5U6O5U4O6U3 |
Gauss code of K* |
O1O2O3O4U5U6U3U4O6U1O5U2 |
Gauss code of -K* |
O1O2O3O4U3O5U4O6U1U2U6U5 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
2 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -3 -2 1 3 0 1],[ 3 0 0 3 4 1 1],[ 2 0 0 1 2 0 0],[-1 -3 -1 0 1 -1 1],[-3 -4 -2 -1 0 -1 1],[ 0 -1 0 1 1 0 1],[-1 -1 0 -1 -1 -1 0]] |
Primitive based matrix |
[[ 0 3 1 1 0 -2 -3],[-3 0 1 -1 -1 -2 -4],[-1 -1 0 -1 -1 0 -1],[-1 1 1 0 -1 -1 -3],[ 0 1 1 1 0 0 -1],[ 2 2 0 1 0 0 0],[ 3 4 1 3 1 0 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,-1,-1,0,2,3,-1,1,1,2,4,1,1,0,1,1,1,3,0,1,0] |
Phi over symmetry |
[-3,-2,0,1,1,3,0,1,1,3,4,0,0,1,2,1,1,1,-1,-1,1] |
Phi of -K |
[-3,-2,0,1,1,3,1,2,1,3,2,2,2,3,3,0,0,2,-1,1,3] |
Phi of K* |
[-3,-1,-1,0,2,3,1,3,2,3,2,1,0,2,1,0,3,3,2,2,1] |
Phi of -K* |
[-3,-2,0,1,1,3,0,1,1,3,4,0,0,1,2,1,1,1,-1,-1,1] |
Symmetry type of based matrix |
c |
u-polynomial |
t^2-2t |
Normalized Jones-Krushkal polynomial |
5z+11 |
Enhanced Jones-Krushkal polynomial |
-12w^3z+17w^2z+11w |
Inner characteristic polynomial |
t^6+38t^4+31t^2 |
Outer characteristic polynomial |
t^7+62t^5+92t^3 |
Flat arrow polynomial |
8*K1**3 - 2*K1**2 - 8*K1*K2 - 2*K1 + K2 + 2*K3 + 2 |
2-strand cable arrow polynomial |
-384*K1**4*K2**2 + 128*K1**4*K2 - 272*K1**4 + 256*K1**3*K2**3*K3 + 672*K1**3*K2*K3 - 1216*K1**2*K2**4 + 736*K1**2*K2**3 - 320*K1**2*K2**2*K3**2 - 3680*K1**2*K2**2 + 1920*K1**2*K2 - 544*K1**2*K3**2 - 1312*K1**2 + 1696*K1*K2**3*K3 + 128*K1*K2*K3**3 + 3656*K1*K2*K3 + 352*K1*K3*K4 - 192*K2**6 + 288*K2**4*K4 - 1256*K2**4 - 896*K2**2*K3**2 - 160*K2**2*K4**2 + 600*K2**2*K4 - 548*K2**2 + 184*K2*K3*K5 + 40*K2*K4*K6 - 16*K3**4 - 1084*K3**2 - 254*K4**2 - 4*K5**2 - 4*K6**2 + 1484 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{1, 6}, {2, 5}, {3, 4}]] |
If K is slice |
False |