Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.599

Min(phi) over symmetries of the knot is: [-3,-2,-1,1,2,3,-1,1,1,4,4,1,0,2,2,0,1,2,0,0,1]
Flat knots (up to 7 crossings) with same phi are :['6.599', '7.17814']
Arrow polynomial of the knot is: 4*K1**3 - 8*K1**2 - 4*K1*K2 - K1 + 4*K2 + K3 + 5
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.315', '6.337', '6.389', '6.418', '6.599', '6.675', '6.686', '6.688', '6.746', '6.747', '6.809', '6.1034', '6.1128', '6.1133', '6.1334', '6.1363', '6.1489', '6.1539', '6.1564', '6.1821', '6.1863']
Outer characteristic polynomial of the knot is: t^7+78t^5+73t^3+7t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.599']
2-strand cable arrow polynomial of the knot is: -256*K1**4*K2**2 + 768*K1**4*K2 - 1424*K1**4 + 320*K1**3*K2*K3 - 608*K1**3*K3 - 192*K1**2*K2**4 + 800*K1**2*K2**3 - 5952*K1**2*K2**2 - 320*K1**2*K2*K4 + 8752*K1**2*K2 - 208*K1**2*K3**2 - 6896*K1**2 + 288*K1*K2**3*K3 - 1216*K1*K2**2*K3 - 64*K1*K2**2*K5 - 64*K1*K2*K3*K4 + 7920*K1*K2*K3 + 944*K1*K3*K4 + 96*K1*K4*K5 - 32*K2**6 + 32*K2**4*K4 - 992*K2**4 - 288*K2**2*K3**2 - 16*K2**2*K4**2 + 1408*K2**2*K4 - 4942*K2**2 + 296*K2*K3*K5 + 16*K2*K4*K6 + 8*K3**2*K6 - 2588*K3**2 - 648*K4**2 - 116*K5**2 - 10*K6**2 + 5182
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.599']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.11446', 'vk6.11743', 'vk6.12760', 'vk6.13105', 'vk6.20320', 'vk6.21662', 'vk6.27623', 'vk6.29168', 'vk6.31197', 'vk6.31538', 'vk6.32365', 'vk6.32782', 'vk6.39041', 'vk6.41301', 'vk6.45797', 'vk6.47473', 'vk6.52199', 'vk6.52462', 'vk6.53030', 'vk6.53352', 'vk6.57191', 'vk6.58403', 'vk6.61804', 'vk6.62927', 'vk6.63765', 'vk6.63877', 'vk6.64193', 'vk6.64381', 'vk6.66798', 'vk6.67667', 'vk6.69437', 'vk6.70160']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U2O5U3O6U1U6U4U5
R3 orbit {'O1O2O3O4U2O5U3O6U1U6U4U5'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U5U1U6U4O6U2O5U3
Gauss code of K* O1O2O3O4U1U5U6U3O5U4O6U2
Gauss code of -K* O1O2O3O4U3O5U1O6U2U5U6U4
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -3 -2 -1 2 3 1],[ 3 0 -1 1 4 4 1],[ 2 1 0 1 2 2 0],[ 1 -1 -1 0 1 2 0],[-2 -4 -2 -1 0 1 0],[-3 -4 -2 -2 -1 0 0],[-1 -1 0 0 0 0 0]]
Primitive based matrix [[ 0 3 2 1 -1 -2 -3],[-3 0 -1 0 -2 -2 -4],[-2 1 0 0 -1 -2 -4],[-1 0 0 0 0 0 -1],[ 1 2 1 0 0 -1 -1],[ 2 2 2 0 1 0 1],[ 3 4 4 1 1 -1 0]]
If based matrix primitive True
Phi of primitive based matrix [-3,-2,-1,1,2,3,1,0,2,2,4,0,1,2,4,0,0,1,1,1,-1]
Phi over symmetry [-3,-2,-1,1,2,3,-1,1,1,4,4,1,0,2,2,0,1,2,0,0,1]
Phi of -K [-3,-2,-1,1,2,3,2,1,3,1,2,0,3,2,3,2,2,2,1,2,0]
Phi of K* [-3,-2,-1,1,2,3,0,2,2,3,2,1,2,2,1,2,3,3,0,1,2]
Phi of -K* [-3,-2,-1,1,2,3,-1,1,1,4,4,1,0,2,2,0,1,2,0,0,1]
Symmetry type of based matrix c
u-polynomial 0
Normalized Jones-Krushkal polynomial 5z^2+25z+31
Enhanced Jones-Krushkal polynomial 5w^3z^2+25w^2z+31w
Inner characteristic polynomial t^6+50t^4+27t^2+1
Outer characteristic polynomial t^7+78t^5+73t^3+7t
Flat arrow polynomial 4*K1**3 - 8*K1**2 - 4*K1*K2 - K1 + 4*K2 + K3 + 5
2-strand cable arrow polynomial -256*K1**4*K2**2 + 768*K1**4*K2 - 1424*K1**4 + 320*K1**3*K2*K3 - 608*K1**3*K3 - 192*K1**2*K2**4 + 800*K1**2*K2**3 - 5952*K1**2*K2**2 - 320*K1**2*K2*K4 + 8752*K1**2*K2 - 208*K1**2*K3**2 - 6896*K1**2 + 288*K1*K2**3*K3 - 1216*K1*K2**2*K3 - 64*K1*K2**2*K5 - 64*K1*K2*K3*K4 + 7920*K1*K2*K3 + 944*K1*K3*K4 + 96*K1*K4*K5 - 32*K2**6 + 32*K2**4*K4 - 992*K2**4 - 288*K2**2*K3**2 - 16*K2**2*K4**2 + 1408*K2**2*K4 - 4942*K2**2 + 296*K2*K3*K5 + 16*K2*K4*K6 + 8*K3**2*K6 - 2588*K3**2 - 648*K4**2 - 116*K5**2 - 10*K6**2 + 5182
Genus of based matrix 0
Fillings of based matrix [[{3, 6}, {1, 5}, {2, 4}]]
If K is slice True
Contact