| Gauss code |
O1O2O3O4U2O5U4O6U3U6U1U5 |
| R3 orbit |
{'O1O2O3O4U2O5U4O6U3U6U1U5'} |
| R3 orbit length |
1 |
| Gauss code of -K |
O1O2O3O4U5U4U6U2O6U1O5U3 |
| Gauss code of K* |
O1O2O3O4U3U5U1U6O5U4O6U2 |
| Gauss code of -K* |
O1O2O3O4U3O5U1O6U5U4U6U2 |
| Diagrammatic symmetry type |
c |
| Flat genus of the diagram |
3 |
| If K is checkerboard colorable |
False |
| If K is almost classical |
False |
| Based matrix from Gauss code |
[[ 0 -1 -2 -1 0 3 1],[ 1 0 -2 0 1 3 1],[ 2 2 0 2 1 2 1],[ 1 0 -2 0 0 3 1],[ 0 -1 -1 0 0 1 0],[-3 -3 -2 -3 -1 0 0],[-1 -1 -1 -1 0 0 0]] |
| Primitive based matrix |
[[ 0 3 1 0 -1 -1 -2],[-3 0 0 -1 -3 -3 -2],[-1 0 0 0 -1 -1 -1],[ 0 1 0 0 0 -1 -1],[ 1 3 1 0 0 0 -2],[ 1 3 1 1 0 0 -2],[ 2 2 1 1 2 2 0]] |
| If based matrix primitive |
True |
| Phi of primitive based matrix |
[-3,-1,0,1,1,2,0,1,3,3,2,0,1,1,1,0,1,1,0,2,2] |
| Phi over symmetry |
[-3,-1,0,1,1,2,0,1,3,3,2,0,1,1,1,0,1,1,0,2,2] |
| Phi of -K |
[-2,-1,-1,0,1,3,-1,-1,1,2,3,0,0,1,1,1,1,1,1,2,2] |
| Phi of K* |
[-3,-1,0,1,1,2,2,2,1,1,3,1,1,1,2,0,1,1,0,-1,-1] |
| Phi of -K* |
[-2,-1,-1,0,1,3,2,2,1,1,2,0,0,1,3,1,1,3,0,1,0] |
| Symmetry type of based matrix |
c |
| u-polynomial |
-t^3+t^2+t |
| Normalized Jones-Krushkal polynomial |
3z^2+24z+37 |
| Enhanced Jones-Krushkal polynomial |
3w^3z^2+24w^2z+37w |
| Inner characteristic polynomial |
t^6+36t^4+22t^2+1 |
| Outer characteristic polynomial |
t^7+52t^5+45t^3+7t |
| Flat arrow polynomial |
-10*K1**2 - 2*K1*K2 + K1 + 5*K2 + K3 + 6 |
| 2-strand cable arrow polynomial |
-128*K1**4*K2**2 + 1408*K1**4*K2 - 4896*K1**4 + 192*K1**3*K2*K3 - 192*K1**3*K3 + 1248*K1**2*K2**3 - 8576*K1**2*K2**2 - 320*K1**2*K2*K4 + 10984*K1**2*K2 - 352*K1**2*K3**2 - 96*K1**2*K3*K5 - 4284*K1**2 - 1696*K1*K2**2*K3 + 7392*K1*K2*K3 + 1016*K1*K3*K4 + 152*K1*K4*K5 - 1816*K2**4 - 176*K2**2*K3**2 - 8*K2**2*K4**2 + 1944*K2**2*K4 - 3902*K2**2 + 184*K2*K3*K5 + 8*K2*K4*K6 - 1760*K3**2 - 634*K4**2 - 100*K5**2 - 2*K6**2 + 4408 |
| Genus of based matrix |
1 |
| Fillings of based matrix |
[[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {4, 5}, {2, 3}]] |
| If K is slice |
False |