Gauss code |
O1O2O3O4U3O5U2O6U1U6U5U4 |
R3 orbit |
{'O1O2O3O4U3O5U2O6U1U6U5U4'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4U1U5U6U4O6U3O5U2 |
Gauss code of K* |
O1O2O3O4U1U5U6U4O6U3O5U2 |
Gauss code of -K* |
Same |
Diagrammatic symmetry type |
- |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -3 -2 -1 3 2 1],[ 3 0 0 0 5 3 1],[ 2 0 0 0 3 1 0],[ 1 0 0 0 1 0 0],[-3 -5 -3 -1 0 0 0],[-2 -3 -1 0 0 0 0],[-1 -1 0 0 0 0 0]] |
Primitive based matrix |
[[ 0 3 2 1 -1 -2 -3],[-3 0 0 0 -1 -3 -5],[-2 0 0 0 0 -1 -3],[-1 0 0 0 0 0 -1],[ 1 1 0 0 0 0 0],[ 2 3 1 0 0 0 0],[ 3 5 3 1 0 0 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-3,-2,-1,1,2,3,0,0,1,3,5,0,0,1,3,0,0,1,0,0,0] |
Phi over symmetry |
[-3,-2,-1,1,2,3,0,0,1,3,5,0,0,1,3,0,0,1,0,0,0] |
Phi of -K |
[-3,-2,-1,1,2,3,1,2,3,2,1,1,3,3,2,2,3,3,1,2,1] |
Phi of K* |
[-3,-2,-1,1,2,3,1,2,3,2,1,1,3,3,2,2,3,3,1,2,1] |
Phi of -K* |
[-3,-2,-1,1,2,3,0,0,1,3,5,0,0,1,3,0,0,1,0,0,0] |
Symmetry type of based matrix |
- |
u-polynomial |
0 |
Normalized Jones-Krushkal polynomial |
2z^2+22z+37 |
Enhanced Jones-Krushkal polynomial |
2w^3z^2+22w^2z+37w |
Inner characteristic polynomial |
t^6+46t^4+37t^2+1 |
Outer characteristic polynomial |
t^7+74t^5+97t^3+7t |
Flat arrow polynomial |
-16*K1**2 - 4*K1*K2 + 2*K1 + 8*K2 + 2*K3 + 9 |
2-strand cable arrow polynomial |
-384*K1**6 - 384*K1**4*K2**2 + 1216*K1**4*K2 - 4864*K1**4 + 448*K1**3*K2*K3 - 704*K1**3*K3 - 7008*K1**2*K2**2 - 384*K1**2*K2*K4 + 11664*K1**2*K2 - 768*K1**2*K3**2 - 64*K1**2*K4**2 - 5776*K1**2 - 576*K1*K2**2*K3 - 64*K1*K2**2*K5 + 8880*K1*K2*K3 + 1424*K1*K3*K4 + 144*K1*K4*K5 - 1440*K2**4 - 416*K2**2*K3**2 - 16*K2**2*K4**2 + 1600*K2**2*K4 - 4956*K2**2 + 368*K2*K3*K5 + 32*K2*K4*K6 - 2632*K3**2 - 784*K4**2 - 120*K5**2 - 12*K6**2 + 5574 |
Genus of based matrix |
0 |
Fillings of based matrix |
[[{3, 6}, {2, 5}, {1, 4}]] |
If K is slice |
True |