Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.613

Min(phi) over symmetries of the knot is: [-3,-2,0,0,2,3,0,1,1,2,3,0,2,3,3,0,0,0,1,2,1]
Flat knots (up to 7 crossings) with same phi are :['6.613']
Arrow polynomial of the knot is: 8*K1**3 - 4*K1**2 - 4*K1*K2 - 4*K1 + 2*K2 + 3
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.206', '6.236', '6.575', '6.580', '6.613', '6.619', '6.810', '6.819', '6.831', '6.838', '6.957', '6.1018', '6.1028', '6.1046', '6.1073', '6.1279', '6.1507', '6.1532', '6.1556', '6.1639', '6.1688', '6.1924', '6.1931']
Outer characteristic polynomial of the knot is: t^7+77t^5+232t^3+11t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.613']
2-strand cable arrow polynomial of the knot is: -512*K1**4*K2**2 + 1024*K1**4*K2 - 2208*K1**4 + 128*K1**3*K2**3*K3 - 256*K1**3*K2**2*K3 + 416*K1**3*K2*K3 - 352*K1**3*K3 - 256*K1**2*K2**4 - 256*K1**2*K2**3*K4 + 2144*K1**2*K2**3 - 192*K1**2*K2**2*K3**2 + 256*K1**2*K2**2*K4 - 8272*K1**2*K2**2 + 192*K1**2*K2*K3**2 - 640*K1**2*K2*K4 + 8952*K1**2*K2 - 320*K1**2*K3**2 - 5244*K1**2 - 128*K1*K2**4*K3 + 1856*K1*K2**3*K3 + 544*K1*K2**2*K3*K4 - 1696*K1*K2**2*K3 - 352*K1*K2**2*K5 - 288*K1*K2*K3*K4 + 7160*K1*K2*K3 + 752*K1*K3*K4 - 64*K2**6 + 320*K2**4*K4 - 2224*K2**4 - 1120*K2**2*K3**2 - 288*K2**2*K4**2 + 1552*K2**2*K4 - 2920*K2**2 + 336*K2*K3*K5 - 1668*K3**2 - 344*K4**2 + 3966
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.613']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.73275', 'vk6.73418', 'vk6.74014', 'vk6.74554', 'vk6.75187', 'vk6.75419', 'vk6.76032', 'vk6.76764', 'vk6.78148', 'vk6.78385', 'vk6.78995', 'vk6.79554', 'vk6.79977', 'vk6.80132', 'vk6.80521', 'vk6.80987', 'vk6.81878', 'vk6.82148', 'vk6.82177', 'vk6.82596', 'vk6.83586', 'vk6.83761', 'vk6.84039', 'vk6.84616', 'vk6.84947', 'vk6.85588', 'vk6.85710', 'vk6.85923', 'vk6.86739', 'vk6.87673', 'vk6.88941', 'vk6.89964']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U5O6U1O5U2U3U6U4
R3 orbit {'O1O2O3O4U5O6U1O5U2U3U6U4'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U1U5U2U3O6U4O5U6
Gauss code of K* O1O2O3O4U5U1U2U4O6U3O5U6
Gauss code of -K* O1O2O3O4U5O6U2O5U1U3U4U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -3 -2 0 3 0 2],[ 3 0 0 1 3 3 2],[ 2 0 0 1 3 2 1],[ 0 -1 -1 0 2 0 0],[-3 -3 -3 -2 0 -2 -1],[ 0 -3 -2 0 2 0 2],[-2 -2 -1 0 1 -2 0]]
Primitive based matrix [[ 0 3 2 0 0 -2 -3],[-3 0 -1 -2 -2 -3 -3],[-2 1 0 0 -2 -1 -2],[ 0 2 0 0 0 -1 -1],[ 0 2 2 0 0 -2 -3],[ 2 3 1 1 2 0 0],[ 3 3 2 1 3 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-3,-2,0,0,2,3,1,2,2,3,3,0,2,1,2,0,1,1,2,3,0]
Phi over symmetry [-3,-2,0,0,2,3,0,1,1,2,3,0,2,3,3,0,0,0,1,2,1]
Phi of -K [-3,-2,0,0,2,3,1,0,2,3,3,0,1,3,2,0,0,1,2,1,0]
Phi of K* [-3,-2,0,0,2,3,0,1,1,2,3,0,2,3,3,0,0,0,1,2,1]
Phi of -K* [-3,-2,0,0,2,3,0,1,3,2,3,1,2,1,3,0,0,2,2,2,1]
Symmetry type of based matrix c
u-polynomial 0
Normalized Jones-Krushkal polynomial 6z^2+27z+31
Enhanced Jones-Krushkal polynomial 6w^3z^2+27w^2z+31w
Inner characteristic polynomial t^6+51t^4+136t^2+1
Outer characteristic polynomial t^7+77t^5+232t^3+11t
Flat arrow polynomial 8*K1**3 - 4*K1**2 - 4*K1*K2 - 4*K1 + 2*K2 + 3
2-strand cable arrow polynomial -512*K1**4*K2**2 + 1024*K1**4*K2 - 2208*K1**4 + 128*K1**3*K2**3*K3 - 256*K1**3*K2**2*K3 + 416*K1**3*K2*K3 - 352*K1**3*K3 - 256*K1**2*K2**4 - 256*K1**2*K2**3*K4 + 2144*K1**2*K2**3 - 192*K1**2*K2**2*K3**2 + 256*K1**2*K2**2*K4 - 8272*K1**2*K2**2 + 192*K1**2*K2*K3**2 - 640*K1**2*K2*K4 + 8952*K1**2*K2 - 320*K1**2*K3**2 - 5244*K1**2 - 128*K1*K2**4*K3 + 1856*K1*K2**3*K3 + 544*K1*K2**2*K3*K4 - 1696*K1*K2**2*K3 - 352*K1*K2**2*K5 - 288*K1*K2*K3*K4 + 7160*K1*K2*K3 + 752*K1*K3*K4 - 64*K2**6 + 320*K2**4*K4 - 2224*K2**4 - 1120*K2**2*K3**2 - 288*K2**2*K4**2 + 1552*K2**2*K4 - 2920*K2**2 + 336*K2*K3*K5 - 1668*K3**2 - 344*K4**2 + 3966
Genus of based matrix 1
Fillings of based matrix [[{2, 6}, {3, 5}, {1, 4}], [{4, 6}, {2, 5}, {1, 3}]]
If K is slice False
Contact