Gauss code |
O1O2O3O4U5O6U1O5U3U4U6U2 |
R3 orbit |
{'O1O2O3O4U5O6U1O5U3U4U6U2'} |
R3 orbit length |
1 |
Gauss code of -K |
O1O2O3O4U3U5U1U2O6U4O5U6 |
Gauss code of K* |
O1O2O3O4U5U4U1U2O6U3O5U6 |
Gauss code of -K* |
O1O2O3O4U5O6U2O5U3U4U1U6 |
Diagrammatic symmetry type |
c |
Flat genus of the diagram |
3 |
If K is checkerboard colorable |
False |
If K is almost classical |
False |
Based matrix from Gauss code |
[[ 0 -3 1 -1 1 0 2],[ 3 0 3 0 1 3 2],[-1 -3 0 -2 0 0 1],[ 1 0 2 0 1 1 1],[-1 -1 0 -1 0 -1 0],[ 0 -3 0 -1 1 0 2],[-2 -2 -1 -1 0 -2 0]] |
Primitive based matrix |
[[ 0 2 1 1 0 -1 -3],[-2 0 0 -1 -2 -1 -2],[-1 0 0 0 -1 -1 -1],[-1 1 0 0 0 -2 -3],[ 0 2 1 0 0 -1 -3],[ 1 1 1 2 1 0 0],[ 3 2 1 3 3 0 0]] |
If based matrix primitive |
True |
Phi of primitive based matrix |
[-2,-1,-1,0,1,3,0,1,2,1,2,0,1,1,1,0,2,3,1,3,0] |
Phi over symmetry |
[-3,-1,0,1,1,2,0,3,1,3,2,1,1,2,1,1,0,2,0,0,1] |
Phi of -K |
[-3,-1,0,1,1,2,2,0,1,3,3,0,0,1,2,1,0,0,0,0,1] |
Phi of K* |
[-2,-1,-1,0,1,3,0,1,0,2,3,0,1,0,1,0,1,3,0,0,2] |
Phi of -K* |
[-3,-1,0,1,1,2,0,3,1,3,2,1,1,2,1,1,0,2,0,0,1] |
Symmetry type of based matrix |
c |
u-polynomial |
t^3-t^2-t |
Normalized Jones-Krushkal polynomial |
6z^2+27z+31 |
Enhanced Jones-Krushkal polynomial |
6w^3z^2+27w^2z+31w |
Inner characteristic polynomial |
t^6+36t^4+52t^2+1 |
Outer characteristic polynomial |
t^7+52t^5+93t^3+7t |
Flat arrow polynomial |
4*K1**3 - 10*K1**2 - 2*K1*K2 - 2*K1 + 5*K2 + 6 |
2-strand cable arrow polynomial |
256*K1**4*K2**3 - 1472*K1**4*K2**2 + 2976*K1**4*K2 - 4144*K1**4 - 128*K1**3*K2**2*K3 + 608*K1**3*K2*K3 - 512*K1**3*K3 - 896*K1**2*K2**4 + 4992*K1**2*K2**3 - 12240*K1**2*K2**2 - 544*K1**2*K2*K4 + 10616*K1**2*K2 - 48*K1**2*K3**2 - 3812*K1**2 + 1408*K1*K2**3*K3 - 2912*K1*K2**2*K3 - 160*K1*K2**2*K5 - 64*K1*K2*K3*K4 + 7240*K1*K2*K3 + 232*K1*K3*K4 - 32*K2**6 + 32*K2**4*K4 - 3080*K2**4 - 576*K2**2*K3**2 - 8*K2**2*K4**2 + 2072*K2**2*K4 - 2184*K2**2 + 160*K2*K3*K5 - 980*K3**2 - 130*K4**2 + 3328 |
Genus of based matrix |
1 |
Fillings of based matrix |
[[{5, 6}, {2, 4}, {1, 3}]] |
If K is slice |
False |