Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.619

Min(phi) over symmetries of the knot is: [-3,-1,0,0,1,3,0,2,3,1,3,1,1,0,2,1,0,2,1,2,1]
Flat knots (up to 7 crossings) with same phi are :['6.619']
Arrow polynomial of the knot is: 8*K1**3 - 4*K1**2 - 4*K1*K2 - 4*K1 + 2*K2 + 3
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.206', '6.236', '6.575', '6.580', '6.613', '6.619', '6.810', '6.819', '6.831', '6.838', '6.957', '6.1018', '6.1028', '6.1046', '6.1073', '6.1279', '6.1507', '6.1532', '6.1556', '6.1639', '6.1688', '6.1924', '6.1931']
Outer characteristic polynomial of the knot is: t^7+60t^5+137t^3+16t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.619']
2-strand cable arrow polynomial of the knot is: 96*K1**4*K2 - 576*K1**4 + 896*K1**2*K2**3 - 3888*K1**2*K2**2 - 576*K1**2*K2*K4 + 5016*K1**2*K2 - 4032*K1**2 + 352*K1*K2**3*K3 - 416*K1*K2**2*K3 - 160*K1*K2*K3*K4 + 4376*K1*K2*K3 + 472*K1*K3*K4 + 8*K1*K4*K5 - 64*K2**6 + 320*K2**4*K4 - 1904*K2**4 - 32*K2**3*K6 - 688*K2**2*K3**2 - 352*K2**2*K4**2 + 1848*K2**2*K4 - 2508*K2**2 + 400*K2*K3*K5 + 144*K2*K4*K6 - 1244*K3**2 - 564*K4**2 - 36*K5**2 - 12*K6**2 + 3122
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.619']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.71597', 'vk6.71600', 'vk6.71721', 'vk6.71725', 'vk6.72142', 'vk6.72145', 'vk6.72336', 'vk6.74048', 'vk6.74050', 'vk6.74617', 'vk6.76804', 'vk6.77212', 'vk6.77223', 'vk6.77524', 'vk6.77535', 'vk6.77669', 'vk6.79047', 'vk6.79056', 'vk6.79614', 'vk6.79624', 'vk6.80567', 'vk6.80580', 'vk6.81019', 'vk6.81032', 'vk6.81343', 'vk6.81350', 'vk6.81392', 'vk6.85410', 'vk6.85427', 'vk6.85491', 'vk6.87976', 'vk6.89322']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U5O6U1O5U3U6U2U4
R3 orbit {'O1O2O3O4U5O6U1O5U3U6U2U4'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U1U3U5U2O6U4O5U6
Gauss code of K* O1O2O3O4U5U3U1U4O6U2O5U6
Gauss code of -K* O1O2O3O4U5O6U3O5U1U4U2U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -3 0 -1 3 0 1],[ 3 0 2 0 3 3 1],[ 0 -2 0 -1 2 1 0],[ 1 0 1 0 2 1 0],[-3 -3 -2 -2 0 -2 -1],[ 0 -3 -1 -1 2 0 1],[-1 -1 0 0 1 -1 0]]
Primitive based matrix [[ 0 3 1 0 0 -1 -3],[-3 0 -1 -2 -2 -2 -3],[-1 1 0 0 -1 0 -1],[ 0 2 0 0 1 -1 -2],[ 0 2 1 -1 0 -1 -3],[ 1 2 0 1 1 0 0],[ 3 3 1 2 3 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-3,-1,0,0,1,3,1,2,2,2,3,0,1,0,1,-1,1,2,1,3,0]
Phi over symmetry [-3,-1,0,0,1,3,0,2,3,1,3,1,1,0,2,1,0,2,1,2,1]
Phi of -K [-3,-1,0,0,1,3,2,0,1,3,3,0,0,2,2,1,0,1,1,1,1]
Phi of K* [-3,-1,0,0,1,3,1,1,1,2,3,0,1,2,3,-1,0,0,0,1,2]
Phi of -K* [-3,-1,0,0,1,3,0,2,3,1,3,1,1,0,2,1,0,2,1,2,1]
Symmetry type of based matrix c
u-polynomial 0
Normalized Jones-Krushkal polynomial 4z^2+21z+27
Enhanced Jones-Krushkal polynomial 4w^3z^2-4w^3z+25w^2z+27w
Inner characteristic polynomial t^6+40t^4+67t^2+4
Outer characteristic polynomial t^7+60t^5+137t^3+16t
Flat arrow polynomial 8*K1**3 - 4*K1**2 - 4*K1*K2 - 4*K1 + 2*K2 + 3
2-strand cable arrow polynomial 96*K1**4*K2 - 576*K1**4 + 896*K1**2*K2**3 - 3888*K1**2*K2**2 - 576*K1**2*K2*K4 + 5016*K1**2*K2 - 4032*K1**2 + 352*K1*K2**3*K3 - 416*K1*K2**2*K3 - 160*K1*K2*K3*K4 + 4376*K1*K2*K3 + 472*K1*K3*K4 + 8*K1*K4*K5 - 64*K2**6 + 320*K2**4*K4 - 1904*K2**4 - 32*K2**3*K6 - 688*K2**2*K3**2 - 352*K2**2*K4**2 + 1848*K2**2*K4 - 2508*K2**2 + 400*K2*K3*K5 + 144*K2*K4*K6 - 1244*K3**2 - 564*K4**2 - 36*K5**2 - 12*K6**2 + 3122
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{5, 6}, {3, 4}, {1, 2}]]
If K is slice False
Contact