Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.624

Min(phi) over symmetries of the knot is: [-3,-2,0,1,2,2,0,1,3,1,2,0,3,2,3,0,1,1,0,0,0]
Flat knots (up to 7 crossings) with same phi are :['6.624']
Arrow polynomial of the knot is: 4*K1**3 - 2*K1**2 - 6*K1*K2 + K2 + 2*K3 + 2
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.362', '6.624', '6.789', '6.859', '6.882', '6.975', '6.989', '6.1048', '6.1057', '6.1158']
Outer characteristic polynomial of the knot is: t^7+67t^5+275t^3+6t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.624']
2-strand cable arrow polynomial of the knot is: -64*K1**4 + 96*K1**3*K2*K3 - 288*K1**3*K3 + 288*K1**2*K2**3 - 2224*K1**2*K2**2 + 128*K1**2*K2*K3**2 - 32*K1**2*K2*K4 + 4968*K1**2*K2 - 400*K1**2*K3**2 - 32*K1**2*K3*K5 - 5324*K1**2 + 480*K1*K2**3*K3 - 1824*K1*K2**2*K3 - 96*K1*K2**2*K5 + 32*K1*K2*K3**3 - 160*K1*K2*K3*K4 + 5976*K1*K2*K3 + 968*K1*K3*K4 + 144*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 760*K2**4 - 32*K2**3*K6 - 512*K2**2*K3**2 - 24*K2**2*K4**2 + 1392*K2**2*K4 - 4008*K2**2 - 32*K2*K3**2*K4 + 336*K2*K3*K5 + 32*K2*K4*K6 - 16*K3**4 + 16*K3**2*K6 - 2308*K3**2 - 554*K4**2 - 120*K5**2 - 8*K6**2 + 3928
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.624']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.71633', 'vk6.71806', 'vk6.72228', 'vk6.72362', 'vk6.73403', 'vk6.73598', 'vk6.73872', 'vk6.74287', 'vk6.74911', 'vk6.75372', 'vk6.75671', 'vk6.75875', 'vk6.76467', 'vk6.77255', 'vk6.77349', 'vk6.77599', 'vk6.77695', 'vk6.78338', 'vk6.78871', 'vk6.79326', 'vk6.80119', 'vk6.80292', 'vk6.80421', 'vk6.80791', 'vk6.82029', 'vk6.82767', 'vk6.85371', 'vk6.86699', 'vk6.86942', 'vk6.87049', 'vk6.87604', 'vk6.89481']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U5O6U2O5U1U6U4U3
R3 orbit {'O1O2O3O4U5O6U2O5U1U6U4U3'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U2U1U5U4O6U3O5U6
Gauss code of K* O1O2O3O4U1U5U4U3O6U2O5U6
Gauss code of -K* O1O2O3O4U5O6U3O5U2U1U6U4
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -3 -2 2 2 0 1],[ 3 0 1 4 3 2 1],[ 2 -1 0 2 1 2 0],[-2 -4 -2 0 0 -1 -1],[-2 -3 -1 0 0 -1 -1],[ 0 -2 -2 1 1 0 1],[-1 -1 0 1 1 -1 0]]
Primitive based matrix [[ 0 2 2 1 0 -2 -3],[-2 0 0 -1 -1 -1 -3],[-2 0 0 -1 -1 -2 -4],[-1 1 1 0 -1 0 -1],[ 0 1 1 1 0 -2 -2],[ 2 1 2 0 2 0 -1],[ 3 3 4 1 2 1 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-2,-1,0,2,3,0,1,1,1,3,1,1,2,4,1,0,1,2,2,1]
Phi over symmetry [-3,-2,0,1,2,2,0,1,3,1,2,0,3,2,3,0,1,1,0,0,0]
Phi of -K [-3,-2,0,1,2,2,0,1,3,1,2,0,3,2,3,0,1,1,0,0,0]
Phi of K* [-2,-2,-1,0,2,3,0,0,1,2,1,0,1,3,2,0,3,3,0,1,0]
Phi of -K* [-3,-2,0,1,2,2,1,2,1,3,4,2,0,1,2,1,1,1,1,1,0]
Symmetry type of based matrix c
u-polynomial t^3-t^2-t
Normalized Jones-Krushkal polynomial 6z^2+25z+27
Enhanced Jones-Krushkal polynomial 6w^3z^2+25w^2z+27w
Inner characteristic polynomial t^6+45t^4+134t^2+1
Outer characteristic polynomial t^7+67t^5+275t^3+6t
Flat arrow polynomial 4*K1**3 - 2*K1**2 - 6*K1*K2 + K2 + 2*K3 + 2
2-strand cable arrow polynomial -64*K1**4 + 96*K1**3*K2*K3 - 288*K1**3*K3 + 288*K1**2*K2**3 - 2224*K1**2*K2**2 + 128*K1**2*K2*K3**2 - 32*K1**2*K2*K4 + 4968*K1**2*K2 - 400*K1**2*K3**2 - 32*K1**2*K3*K5 - 5324*K1**2 + 480*K1*K2**3*K3 - 1824*K1*K2**2*K3 - 96*K1*K2**2*K5 + 32*K1*K2*K3**3 - 160*K1*K2*K3*K4 + 5976*K1*K2*K3 + 968*K1*K3*K4 + 144*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 760*K2**4 - 32*K2**3*K6 - 512*K2**2*K3**2 - 24*K2**2*K4**2 + 1392*K2**2*K4 - 4008*K2**2 - 32*K2*K3**2*K4 + 336*K2*K3*K5 + 32*K2*K4*K6 - 16*K3**4 + 16*K3**2*K6 - 2308*K3**2 - 554*K4**2 - 120*K5**2 - 8*K6**2 + 3928
Genus of based matrix 2
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{2, 6}, {5}, {4}, {3}, {1}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {1, 5}, {4}, {3}, {2}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {4, 5}, {3}, {2}, {1}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {1, 4}, {3}, {2}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {3, 4}, {1, 2}]]
If K is slice False
Contact