| Gauss code |
O1O2O3O4U1O5U2U3O6U4U5U6 |
| R3 orbit |
{'O1O2O3O4U1O5U2U3O6U4U5U6'} |
| R3 orbit length |
1 |
| Gauss code of -K |
O1O2O3O4U5U6U1O5U2U3O6U4 |
| Gauss code of K* |
O1O2O3U4U5U6U1O4U2O5O6U3 |
| Gauss code of -K* |
O1O2O3U1O4O5U2O6U3U4U5U6 |
| Diagrammatic symmetry type |
c |
| Flat genus of the diagram |
3 |
| If K is checkerboard colorable |
False |
| If K is almost classical |
False |
| Based matrix from Gauss code |
[[ 0 -3 -2 0 1 2 2],[ 3 0 1 2 3 3 1],[ 2 -1 0 1 2 3 2],[ 0 -2 -1 0 1 2 2],[-1 -3 -2 -1 0 1 2],[-2 -3 -3 -2 -1 0 1],[-2 -1 -2 -2 -2 -1 0]] |
| Primitive based matrix |
[[ 0 2 2 1 0 -2 -3],[-2 0 1 -1 -2 -3 -3],[-2 -1 0 -2 -2 -2 -1],[-1 1 2 0 -1 -2 -3],[ 0 2 2 1 0 -1 -2],[ 2 3 2 2 1 0 -1],[ 3 3 1 3 2 1 0]] |
| If based matrix primitive |
True |
| Phi of primitive based matrix |
[-2,-2,-1,0,2,3,-1,1,2,3,3,2,2,2,1,1,2,3,1,2,1] |
| Phi over symmetry |
[-3,-2,0,1,2,2,0,1,1,2,4,1,1,1,2,0,0,0,0,-1,-1] |
| Phi of -K |
[-3,-2,0,1,2,2,0,1,1,2,4,1,1,1,2,0,0,0,0,-1,-1] |
| Phi of K* |
[-2,-2,-1,0,2,3,-1,-1,0,2,4,0,0,1,2,0,1,1,1,1,0] |
| Phi of -K* |
[-3,-2,0,1,2,2,1,2,3,1,3,1,2,2,3,1,2,2,2,1,-1] |
| Symmetry type of based matrix |
c |
| u-polynomial |
t^3-t^2-t |
| Normalized Jones-Krushkal polynomial |
5z^2+24z+29 |
| Enhanced Jones-Krushkal polynomial |
5w^3z^2+24w^2z+29w |
| Inner characteristic polynomial |
t^6+57t^4+30t^2 |
| Outer characteristic polynomial |
t^7+79t^5+63t^3+5t |
| Flat arrow polynomial |
4*K1**3 - 6*K1**2 - 2*K1*K2 - 2*K1 + 3*K2 + 4 |
| 2-strand cable arrow polynomial |
-320*K1**4*K2**2 + 608*K1**4*K2 - 1328*K1**4 + 64*K1**3*K2*K3 - 224*K1**3*K3 - 256*K1**2*K2**4 + 1792*K1**2*K2**3 - 5568*K1**2*K2**2 - 96*K1**2*K2*K4 + 7224*K1**2*K2 - 48*K1**2*K3**2 - 4904*K1**2 + 512*K1*K2**3*K3 - 800*K1*K2**2*K3 - 32*K1*K2**2*K5 + 4352*K1*K2*K3 + 272*K1*K3*K4 + 8*K1*K4*K5 - 32*K2**6 + 32*K2**4*K4 - 1192*K2**4 - 224*K2**2*K3**2 - 8*K2**2*K4**2 + 640*K2**2*K4 - 2576*K2**2 + 40*K2*K3*K5 - 1064*K3**2 - 162*K4**2 - 8*K5**2 + 3296 |
| Genus of based matrix |
1 |
| Fillings of based matrix |
[[{5, 6}, {2, 4}, {1, 3}]] |
| If K is slice |
False |