Min(phi) over symmetries of the knot is: [-3,-2,0,1,2,2,0,1,1,2,4,1,1,1,2,0,0,0,0,-1,-1] |
Flat knots (up to 7 crossings) with same phi are :['6.628'] |
Arrow polynomial of the knot is: 4*K1**3 - 6*K1**2 - 2*K1*K2 - 2*K1 + 3*K2 + 4 |
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.573', '6.628', '6.703', '6.704', '6.723', '6.796', '6.1083', '6.1099', '6.1315'] |
Outer characteristic polynomial of the knot is: t^7+79t^5+63t^3+5t |
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.628'] |
2-strand cable arrow polynomial of the knot is: -320*K1**4*K2**2 + 608*K1**4*K2 - 1328*K1**4 + 64*K1**3*K2*K3 - 224*K1**3*K3 - 256*K1**2*K2**4 + 1792*K1**2*K2**3 - 5568*K1**2*K2**2 - 96*K1**2*K2*K4 + 7224*K1**2*K2 - 48*K1**2*K3**2 - 4904*K1**2 + 512*K1*K2**3*K3 - 800*K1*K2**2*K3 - 32*K1*K2**2*K5 + 4352*K1*K2*K3 + 272*K1*K3*K4 + 8*K1*K4*K5 - 32*K2**6 + 32*K2**4*K4 - 1192*K2**4 - 224*K2**2*K3**2 - 8*K2**2*K4**2 + 640*K2**2*K4 - 2576*K2**2 + 40*K2*K3*K5 - 1064*K3**2 - 162*K4**2 - 8*K5**2 + 3296 |
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.628'] |
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.73267', 'vk6.73410', 'vk6.74018', 'vk6.74562', 'vk6.75171', 'vk6.75407', 'vk6.76040', 'vk6.76768', 'vk6.78132', 'vk6.78373', 'vk6.78999', 'vk6.79562', 'vk6.79969', 'vk6.80126', 'vk6.80529', 'vk6.80991', 'vk6.81877', 'vk6.82150', 'vk6.82179', 'vk6.82595', 'vk6.83587', 'vk6.83763', 'vk6.84037', 'vk6.84615', 'vk6.84946', 'vk6.85590', 'vk6.85714', 'vk6.85939', 'vk6.86737', 'vk6.87659', 'vk6.88940', 'vk6.89965'] |
The R3 orbit of minmal crossing diagrams contains: |
The diagrammatic symmetry type of this knot is c. |
The reverse -K is |
The mirror image K* is |
The reversed mirror image -K* is |
The fillings (up to the first 10) associated to the algebraic genus: |
Or click here to check the fillings |
invariant | value |
---|---|
Gauss code | O1O2O3O4U1O5U2U3O6U4U5U6 |
R3 orbit | {'O1O2O3O4U1O5U2U3O6U4U5U6'} |
R3 orbit length | 1 |
Gauss code of -K | O1O2O3O4U5U6U1O5U2U3O6U4 |
Gauss code of K* | O1O2O3U4U5U6U1O4U2O5O6U3 |
Gauss code of -K* | O1O2O3U1O4O5U2O6U3U4U5U6 |
Diagrammatic symmetry type | c |
Flat genus of the diagram | 3 |
If K is checkerboard colorable | False |
If K is almost classical | False |
Based matrix from Gauss code | [[ 0 -3 -2 0 1 2 2],[ 3 0 1 2 3 3 1],[ 2 -1 0 1 2 3 2],[ 0 -2 -1 0 1 2 2],[-1 -3 -2 -1 0 1 2],[-2 -3 -3 -2 -1 0 1],[-2 -1 -2 -2 -2 -1 0]] |
Primitive based matrix | [[ 0 2 2 1 0 -2 -3],[-2 0 1 -1 -2 -3 -3],[-2 -1 0 -2 -2 -2 -1],[-1 1 2 0 -1 -2 -3],[ 0 2 2 1 0 -1 -2],[ 2 3 2 2 1 0 -1],[ 3 3 1 3 2 1 0]] |
If based matrix primitive | True |
Phi of primitive based matrix | [-2,-2,-1,0,2,3,-1,1,2,3,3,2,2,2,1,1,2,3,1,2,1] |
Phi over symmetry | [-3,-2,0,1,2,2,0,1,1,2,4,1,1,1,2,0,0,0,0,-1,-1] |
Phi of -K | [-3,-2,0,1,2,2,0,1,1,2,4,1,1,1,2,0,0,0,0,-1,-1] |
Phi of K* | [-2,-2,-1,0,2,3,-1,-1,0,2,4,0,0,1,2,0,1,1,1,1,0] |
Phi of -K* | [-3,-2,0,1,2,2,1,2,3,1,3,1,2,2,3,1,2,2,2,1,-1] |
Symmetry type of based matrix | c |
u-polynomial | t^3-t^2-t |
Normalized Jones-Krushkal polynomial | 5z^2+24z+29 |
Enhanced Jones-Krushkal polynomial | 5w^3z^2+24w^2z+29w |
Inner characteristic polynomial | t^6+57t^4+30t^2 |
Outer characteristic polynomial | t^7+79t^5+63t^3+5t |
Flat arrow polynomial | 4*K1**3 - 6*K1**2 - 2*K1*K2 - 2*K1 + 3*K2 + 4 |
2-strand cable arrow polynomial | -320*K1**4*K2**2 + 608*K1**4*K2 - 1328*K1**4 + 64*K1**3*K2*K3 - 224*K1**3*K3 - 256*K1**2*K2**4 + 1792*K1**2*K2**3 - 5568*K1**2*K2**2 - 96*K1**2*K2*K4 + 7224*K1**2*K2 - 48*K1**2*K3**2 - 4904*K1**2 + 512*K1*K2**3*K3 - 800*K1*K2**2*K3 - 32*K1*K2**2*K5 + 4352*K1*K2*K3 + 272*K1*K3*K4 + 8*K1*K4*K5 - 32*K2**6 + 32*K2**4*K4 - 1192*K2**4 - 224*K2**2*K3**2 - 8*K2**2*K4**2 + 640*K2**2*K4 - 2576*K2**2 + 40*K2*K3*K5 - 1064*K3**2 - 162*K4**2 - 8*K5**2 + 3296 |
Genus of based matrix | 1 |
Fillings of based matrix | [[{5, 6}, {2, 4}, {1, 3}]] |
If K is slice | False |