Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.629

Min(phi) over symmetries of the knot is: [-3,-2,0,1,2,2,0,0,2,2,4,0,2,1,2,1,0,0,0,0,-1]
Flat knots (up to 7 crossings) with same phi are :['6.629']
Arrow polynomial of the knot is: -2*K1**2 - 2*K1*K2 + K1 + K2 + K3 + 2
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.217', '6.219', '6.304', '6.349', '6.390', '6.400', '6.416', '6.515', '6.518', '6.530', '6.582', '6.616', '6.629', '6.641', '6.645', '6.702', '6.710', '6.715', '6.729', '6.733', '6.734', '6.802', '6.840', '6.845', '6.854', '6.860', '6.900', '6.905', '6.921', '6.924', '6.979', '6.980', '6.996', '6.1044', '6.1067', '6.1086', '6.1100', '6.1139', '6.1145', '6.1149', '6.1167', '6.1169', '6.1183', '6.1314']
Outer characteristic polynomial of the knot is: t^7+75t^5+70t^3+10t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.629']
2-strand cable arrow polynomial of the knot is: -1040*K1**4 + 32*K1**3*K2*K3 - 544*K1**3*K3 - 1792*K1**2*K2**2 - 32*K1**2*K2*K4 + 4808*K1**2*K2 - 1008*K1**2*K3**2 - 4956*K1**2 - 224*K1*K2**2*K3 - 96*K1*K2**2*K5 - 32*K1*K2*K3*K4 + 6000*K1*K2*K3 + 1224*K1*K3*K4 + 104*K1*K4*K5 + 24*K1*K5*K6 - 328*K2**4 - 112*K2**2*K3**2 - 8*K2**2*K4**2 + 592*K2**2*K4 - 3758*K2**2 + 272*K2*K3*K5 + 16*K2*K4*K6 - 2488*K3**2 - 538*K4**2 - 140*K5**2 - 18*K6**2 + 4040
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.629']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.73327', 'vk6.73339', 'vk6.73490', 'vk6.73502', 'vk6.75249', 'vk6.75265', 'vk6.75499', 'vk6.75511', 'vk6.78217', 'vk6.78229', 'vk6.78457', 'vk6.78473', 'vk6.80043', 'vk6.80055', 'vk6.80193', 'vk6.80205', 'vk6.81941', 'vk6.81942', 'vk6.82190', 'vk6.82208', 'vk6.82668', 'vk6.82671', 'vk6.84732', 'vk6.84735', 'vk6.85034', 'vk6.85035', 'vk6.85761', 'vk6.86509', 'vk6.87324', 'vk6.87686', 'vk6.89632', 'vk6.90080']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U1O5U2U4O6U3U5U6
R3 orbit {'O1O2O3O4U1O5U2U4O6U3U5U6'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U5U6U2O5U1U3O6U4
Gauss code of K* O1O2O3U4U5U1U6O4U2O5O6U3
Gauss code of -K* O1O2O3U1O4O5U2O6U4U3U5U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -3 -2 0 1 2 2],[ 3 0 1 3 2 3 1],[ 2 -1 0 2 1 3 2],[ 0 -3 -2 0 0 2 2],[-1 -2 -1 0 0 1 1],[-2 -3 -3 -2 -1 0 1],[-2 -1 -2 -2 -1 -1 0]]
Primitive based matrix [[ 0 2 2 1 0 -2 -3],[-2 0 1 -1 -2 -3 -3],[-2 -1 0 -1 -2 -2 -1],[-1 1 1 0 0 -1 -2],[ 0 2 2 0 0 -2 -3],[ 2 3 2 1 2 0 -1],[ 3 3 1 2 3 1 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-2,-1,0,2,3,-1,1,2,3,3,1,2,2,1,0,1,2,2,3,1]
Phi over symmetry [-3,-2,0,1,2,2,0,0,2,2,4,0,2,1,2,1,0,0,0,0,-1]
Phi of -K [-3,-2,0,1,2,2,0,0,2,2,4,0,2,1,2,1,0,0,0,0,-1]
Phi of K* [-2,-2,-1,0,2,3,-1,0,0,2,4,0,0,1,2,1,2,2,0,0,0]
Phi of -K* [-3,-2,0,1,2,2,1,3,2,1,3,2,1,2,3,0,2,2,1,1,-1]
Symmetry type of based matrix c
u-polynomial t^3-t^2-t
Normalized Jones-Krushkal polynomial 5z^2+26z+33
Enhanced Jones-Krushkal polynomial 5w^3z^2+26w^2z+33w
Inner characteristic polynomial t^6+53t^4+21t^2
Outer characteristic polynomial t^7+75t^5+70t^3+10t
Flat arrow polynomial -2*K1**2 - 2*K1*K2 + K1 + K2 + K3 + 2
2-strand cable arrow polynomial -1040*K1**4 + 32*K1**3*K2*K3 - 544*K1**3*K3 - 1792*K1**2*K2**2 - 32*K1**2*K2*K4 + 4808*K1**2*K2 - 1008*K1**2*K3**2 - 4956*K1**2 - 224*K1*K2**2*K3 - 96*K1*K2**2*K5 - 32*K1*K2*K3*K4 + 6000*K1*K2*K3 + 1224*K1*K3*K4 + 104*K1*K4*K5 + 24*K1*K5*K6 - 328*K2**4 - 112*K2**2*K3**2 - 8*K2**2*K4**2 + 592*K2**2*K4 - 3758*K2**2 + 272*K2*K3*K5 + 16*K2*K4*K6 - 2488*K3**2 - 538*K4**2 - 140*K5**2 - 18*K6**2 + 4040
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {4, 5}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {4, 5}, {1, 3}]]
If K is slice False
Contact