Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.64

Min(phi) over symmetries of the knot is: [-4,-4,1,1,2,4,0,1,2,4,3,2,3,5,4,0,1,1,1,2,2]
Flat knots (up to 7 crossings) with same phi are :['6.64']
Arrow polynomial of the knot is: 4*K1**2*K2 - 2*K1*K3 - K2
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.64', '6.74', '6.106', '6.178', '6.300', '6.397', '6.479', '6.481', '6.500']
Outer characteristic polynomial of the knot is: t^7+149t^5+246t^3+10t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.64']
2-strand cable arrow polynomial of the knot is: -928*K1**2*K2**2 - 288*K1**2*K2*K4 + 1752*K1**2*K2 - 128*K1**2*K3**2 - 3040*K1**2 + 256*K1*K2**3*K3 + 160*K1*K2**2*K3*K4 - 448*K1*K2**2*K3 - 32*K1*K2**2*K5 - 192*K1*K2*K3*K4 - 32*K1*K2*K3*K6 + 4688*K1*K2*K3 - 32*K1*K2*K4*K5 + 1296*K1*K3*K4 + 176*K1*K4*K5 + 32*K1*K5*K6 - 32*K2**4*K4**2 + 128*K2**4*K4 - 544*K2**4 + 32*K2**3*K4*K6 - 32*K2**3*K6 - 1952*K2**2*K3**2 - 304*K2**2*K4**2 + 1008*K2**2*K4 - 72*K2**2*K6**2 - 2680*K2**2 - 320*K2*K3**2*K4 + 1512*K2*K3*K5 + 504*K2*K4*K6 + 56*K2*K6*K8 + 144*K3**2*K6 - 2272*K3**2 + 8*K4**2*K8 - 938*K4**2 - 352*K5**2 - 192*K6**2 - 16*K8**2 + 3072
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.64']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.74155', 'vk6.74167', 'vk6.74751', 'vk6.74766', 'vk6.76283', 'vk6.76307', 'vk6.76821', 'vk6.76836', 'vk6.79179', 'vk6.79197', 'vk6.79644', 'vk6.79664', 'vk6.80661', 'vk6.80679', 'vk6.81039', 'vk6.81049', 'vk6.82888', 'vk6.82912', 'vk6.83105', 'vk6.83354', 'vk6.83397', 'vk6.84173', 'vk6.84279', 'vk6.85561', 'vk6.85620', 'vk6.85878', 'vk6.86201', 'vk6.86627', 'vk6.87494', 'vk6.88148', 'vk6.88583', 'vk6.89386']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4O5O6U2U1U5U4U6U3
R3 orbit {'O1O2O3O4O5O6U2U1U5U4U6U3'}
R3 orbit length 1
Gauss code of -K O1O2O3O4O5O6U4U1U3U2U6U5
Gauss code of K* O1O2O3O4O5O6U2U1U6U4U3U5
Gauss code of -K* O1O2O3O4O5O6U2U4U3U1U6U5
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -4 -4 2 1 1 4],[ 4 0 0 5 3 2 4],[ 4 0 0 4 2 1 3],[-2 -5 -4 0 -1 -1 2],[-1 -3 -2 1 0 0 2],[-1 -2 -1 1 0 0 1],[-4 -4 -3 -2 -2 -1 0]]
Primitive based matrix [[ 0 4 2 1 1 -4 -4],[-4 0 -2 -1 -2 -3 -4],[-2 2 0 -1 -1 -4 -5],[-1 1 1 0 0 -1 -2],[-1 2 1 0 0 -2 -3],[ 4 3 4 1 2 0 0],[ 4 4 5 2 3 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-4,-2,-1,-1,4,4,2,1,2,3,4,1,1,4,5,0,1,2,2,3,0]
Phi over symmetry [-4,-4,1,1,2,4,0,1,2,4,3,2,3,5,4,0,1,1,1,2,2]
Phi of -K [-4,-4,1,1,2,4,0,2,3,1,4,3,4,2,5,0,0,1,0,2,0]
Phi of K* [-4,-2,-1,-1,4,4,0,1,2,4,5,0,0,1,2,0,2,3,3,4,0]
Phi of -K* [-4,-4,1,1,2,4,0,1,2,4,3,2,3,5,4,0,1,1,1,2,2]
Symmetry type of based matrix c
u-polynomial t^4-t^2-2t
Normalized Jones-Krushkal polynomial 9z^2+28z+21
Enhanced Jones-Krushkal polynomial -2w^4z^2+11w^3z^2+28w^2z+21w
Inner characteristic polynomial t^6+95t^4+35t^2+1
Outer characteristic polynomial t^7+149t^5+246t^3+10t
Flat arrow polynomial 4*K1**2*K2 - 2*K1*K3 - K2
2-strand cable arrow polynomial -928*K1**2*K2**2 - 288*K1**2*K2*K4 + 1752*K1**2*K2 - 128*K1**2*K3**2 - 3040*K1**2 + 256*K1*K2**3*K3 + 160*K1*K2**2*K3*K4 - 448*K1*K2**2*K3 - 32*K1*K2**2*K5 - 192*K1*K2*K3*K4 - 32*K1*K2*K3*K6 + 4688*K1*K2*K3 - 32*K1*K2*K4*K5 + 1296*K1*K3*K4 + 176*K1*K4*K5 + 32*K1*K5*K6 - 32*K2**4*K4**2 + 128*K2**4*K4 - 544*K2**4 + 32*K2**3*K4*K6 - 32*K2**3*K6 - 1952*K2**2*K3**2 - 304*K2**2*K4**2 + 1008*K2**2*K4 - 72*K2**2*K6**2 - 2680*K2**2 - 320*K2*K3**2*K4 + 1512*K2*K3*K5 + 504*K2*K4*K6 + 56*K2*K6*K8 + 144*K3**2*K6 - 2272*K3**2 + 8*K4**2*K8 - 938*K4**2 - 352*K5**2 - 192*K6**2 - 16*K8**2 + 3072
Genus of based matrix 2
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{3, 6}, {5}, {4}, {2}, {1}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {2, 5}, {4}, {3}, {1}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {4, 5}, {3}, {2}, {1}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {2, 4}, {3}, {1}], [{6}, {5}, {3, 4}, {1, 2}]]
If K is slice False
Contact