Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.645

Min(phi) over symmetries of the knot is: [-3,0,0,0,1,2,0,1,2,3,3,0,1,0,0,1,0,1,0,2,1]
Flat knots (up to 7 crossings) with same phi are :['6.645']
Arrow polynomial of the knot is: -2*K1**2 - 2*K1*K2 + K1 + K2 + K3 + 2
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.217', '6.219', '6.304', '6.349', '6.390', '6.400', '6.416', '6.515', '6.518', '6.530', '6.582', '6.616', '6.629', '6.641', '6.645', '6.702', '6.710', '6.715', '6.729', '6.733', '6.734', '6.802', '6.840', '6.845', '6.854', '6.860', '6.900', '6.905', '6.921', '6.924', '6.979', '6.980', '6.996', '6.1044', '6.1067', '6.1086', '6.1100', '6.1139', '6.1145', '6.1149', '6.1167', '6.1169', '6.1183', '6.1314']
Outer characteristic polynomial of the knot is: t^7+43t^5+84t^3+4t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.645']
2-strand cable arrow polynomial of the knot is: -64*K1**4 + 32*K1**3*K2*K3 - 1056*K1**2*K2**2 - 32*K1**2*K2*K4 + 1688*K1**2*K2 - 64*K1**2*K3**2 - 1640*K1**2 + 128*K1*K2**3*K3 - 192*K1*K2**2*K3 - 96*K1*K2**2*K5 + 1712*K1*K2*K3 + 192*K1*K3*K4 + 8*K1*K4*K5 - 120*K2**4 - 64*K2**2*K3**2 - 8*K2**2*K4**2 + 224*K2**2*K4 - 1158*K2**2 + 56*K2*K3*K5 + 8*K2*K4*K6 - 600*K3**2 - 106*K4**2 - 8*K5**2 - 2*K6**2 + 1160
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.645']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4225', 'vk6.4306', 'vk6.5490', 'vk6.5604', 'vk6.7589', 'vk6.7684', 'vk6.9090', 'vk6.9171', 'vk6.18378', 'vk6.18718', 'vk6.24831', 'vk6.25290', 'vk6.37019', 'vk6.37469', 'vk6.44188', 'vk6.44509', 'vk6.48545', 'vk6.48602', 'vk6.49246', 'vk6.49362', 'vk6.50332', 'vk6.50391', 'vk6.51071', 'vk6.51104', 'vk6.56159', 'vk6.56388', 'vk6.60688', 'vk6.61041', 'vk6.65827', 'vk6.66081', 'vk6.68816', 'vk6.69026', 'vk6.83732', 'vk6.83851', 'vk6.85070', 'vk6.85321', 'vk6.86662', 'vk6.86962', 'vk6.87430', 'vk6.89531']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U1O5U4U5O6U3U2U6
R3 orbit {'O1O2O3O4U1O5U4U5O6U3U2U6', 'O1O2O3O4U5U3O6U4U2U1O5U6'}
R3 orbit length 2
Gauss code of -K O1O2O3O4U5U3U2O5U6U1O6U4
Gauss code of K* O1O2O3U4U2U1U5O4U6O5O6U3
Gauss code of -K* O1O2O3U1O4O5U4O6U5U3U2U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -3 0 0 0 1 2],[ 3 0 3 2 1 1 2],[ 0 -3 0 0 -1 1 2],[ 0 -2 0 0 -1 1 1],[ 0 -1 1 1 0 1 0],[-1 -1 -1 -1 -1 0 0],[-2 -2 -2 -1 0 0 0]]
Primitive based matrix [[ 0 2 1 0 0 0 -3],[-2 0 0 0 -1 -2 -2],[-1 0 0 -1 -1 -1 -1],[ 0 0 1 0 1 1 -1],[ 0 1 1 -1 0 0 -2],[ 0 2 1 -1 0 0 -3],[ 3 2 1 1 2 3 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,0,0,0,3,0,0,1,2,2,1,1,1,1,-1,-1,1,0,2,3]
Phi over symmetry [-3,0,0,0,1,2,0,1,2,3,3,0,1,0,0,1,0,1,0,2,1]
Phi of -K [-3,0,0,0,1,2,0,1,2,3,3,0,1,0,0,1,0,1,0,2,1]
Phi of K* [-2,-1,0,0,0,3,1,0,1,2,3,0,0,0,3,0,-1,0,-1,1,2]
Phi of -K* [-3,0,0,0,1,2,1,2,3,1,2,1,1,1,0,0,1,1,1,2,0]
Symmetry type of based matrix c
u-polynomial t^3-t^2-t
Normalized Jones-Krushkal polynomial 5z^2+18z+17
Enhanced Jones-Krushkal polynomial 5w^3z^2+18w^2z+17w
Inner characteristic polynomial t^6+29t^4+41t^2+1
Outer characteristic polynomial t^7+43t^5+84t^3+4t
Flat arrow polynomial -2*K1**2 - 2*K1*K2 + K1 + K2 + K3 + 2
2-strand cable arrow polynomial -64*K1**4 + 32*K1**3*K2*K3 - 1056*K1**2*K2**2 - 32*K1**2*K2*K4 + 1688*K1**2*K2 - 64*K1**2*K3**2 - 1640*K1**2 + 128*K1*K2**3*K3 - 192*K1*K2**2*K3 - 96*K1*K2**2*K5 + 1712*K1*K2*K3 + 192*K1*K3*K4 + 8*K1*K4*K5 - 120*K2**4 - 64*K2**2*K3**2 - 8*K2**2*K4**2 + 224*K2**2*K4 - 1158*K2**2 + 56*K2*K3*K5 + 8*K2*K4*K6 - 600*K3**2 - 106*K4**2 - 8*K5**2 - 2*K6**2 + 1160
Genus of based matrix 2
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{1, 6}, {5}, {4}, {3}, {2}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{5, 6}, {4}, {3}, {2}, {1}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {1, 5}, {4}, {3}, {2}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {2, 4}, {3}, {1}], [{6}, {5}, {3, 4}, {1, 2}], [{6}, {5}, {3, 4}, {2}, {1}], [{6}, {5}, {4}, {2, 3}, {1}]]
If K is slice False
Contact