Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.647

Min(phi) over symmetries of the knot is: [-3,-1,-1,1,2,2,0,1,2,2,3,1,1,1,1,2,1,2,0,0,-1]
Flat knots (up to 7 crossings) with same phi are :['6.647']
Arrow polynomial of the knot is: -8*K1**2 - 2*K1*K2 + K1 + 4*K2 + K3 + 5
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.377', '6.638', '6.646', '6.647', '6.657', '6.658', '6.662', '6.692', '6.695', '6.714', '6.720', '6.726', '6.730', '6.731', '6.749', '6.756', '6.772', '6.779', '6.781', '6.800', '6.829', '6.1085', '6.1089', '6.1302', '6.1349', '6.1350', '6.1360', '6.1362', '6.1375', '6.1384']
Outer characteristic polynomial of the knot is: t^7+60t^5+92t^3+8t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.647']
2-strand cable arrow polynomial of the knot is: -64*K1**6 + 960*K1**4*K2 - 5296*K1**4 + 64*K1**3*K2*K3 - 640*K1**3*K3 + 384*K1**2*K2**3 + 32*K1**2*K2**2*K4 - 5744*K1**2*K2**2 - 704*K1**2*K2*K4 + 12016*K1**2*K2 - 240*K1**2*K3**2 - 64*K1**2*K4**2 - 6404*K1**2 - 640*K1*K2**2*K3 - 64*K1*K2**2*K5 - 32*K1*K2*K3*K4 + 7464*K1*K2*K3 + 1208*K1*K3*K4 + 80*K1*K4*K5 - 608*K2**4 - 48*K2**2*K3**2 - 8*K2**2*K4**2 + 1312*K2**2*K4 - 5750*K2**2 + 184*K2*K3*K5 + 8*K2*K4*K6 - 2368*K3**2 - 760*K4**2 - 84*K5**2 - 2*K6**2 + 5806
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.647']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.20018', 'vk6.20061', 'vk6.21290', 'vk6.21341', 'vk6.27069', 'vk6.27126', 'vk6.28774', 'vk6.28813', 'vk6.38458', 'vk6.38527', 'vk6.40647', 'vk6.40722', 'vk6.45342', 'vk6.45427', 'vk6.47111', 'vk6.47167', 'vk6.56833', 'vk6.56882', 'vk6.57967', 'vk6.58018', 'vk6.61351', 'vk6.61412', 'vk6.62527', 'vk6.62567', 'vk6.66545', 'vk6.66590', 'vk6.67334', 'vk6.67379', 'vk6.69191', 'vk6.69242', 'vk6.69942', 'vk6.69981']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U1O5U6U2O6U4U5U3
R3 orbit {'O1O2O3O4U1O5U6U2O6U4U5U3'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U2U5U1O6U3U6O5U4
Gauss code of K* O1O2O3U4U5U3U1O4U2O6O5U6
Gauss code of -K* O1O2O3U4O5O4U2O6U3U1U5U6
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -3 -1 2 1 2 -1],[ 3 0 1 3 2 2 2],[ 1 -1 0 2 0 1 1],[-2 -3 -2 0 -1 1 -2],[-1 -2 0 1 0 1 -1],[-2 -2 -1 -1 -1 0 -2],[ 1 -2 -1 2 1 2 0]]
Primitive based matrix [[ 0 2 2 1 -1 -1 -3],[-2 0 1 -1 -2 -2 -3],[-2 -1 0 -1 -1 -2 -2],[-1 1 1 0 0 -1 -2],[ 1 2 1 0 0 1 -1],[ 1 2 2 1 -1 0 -2],[ 3 3 2 2 1 2 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-2,-1,1,1,3,-1,1,2,2,3,1,1,2,2,0,1,2,-1,1,2]
Phi over symmetry [-3,-1,-1,1,2,2,0,1,2,2,3,1,1,1,1,2,1,2,0,0,-1]
Phi of -K [-3,-1,-1,1,2,2,0,1,2,2,3,1,1,1,1,2,1,2,0,0,-1]
Phi of K* [-2,-2,-1,1,1,3,-1,0,1,2,3,0,1,1,2,1,2,2,-1,0,1]
Phi of -K* [-3,-1,-1,1,2,2,1,2,2,2,3,1,0,1,2,1,2,2,1,1,-1]
Symmetry type of based matrix c
u-polynomial t^3-2t^2+t
Normalized Jones-Krushkal polynomial z^2+22z+41
Enhanced Jones-Krushkal polynomial w^3z^2+22w^2z+41w
Inner characteristic polynomial t^6+40t^4+46t^2+1
Outer characteristic polynomial t^7+60t^5+92t^3+8t
Flat arrow polynomial -8*K1**2 - 2*K1*K2 + K1 + 4*K2 + K3 + 5
2-strand cable arrow polynomial -64*K1**6 + 960*K1**4*K2 - 5296*K1**4 + 64*K1**3*K2*K3 - 640*K1**3*K3 + 384*K1**2*K2**3 + 32*K1**2*K2**2*K4 - 5744*K1**2*K2**2 - 704*K1**2*K2*K4 + 12016*K1**2*K2 - 240*K1**2*K3**2 - 64*K1**2*K4**2 - 6404*K1**2 - 640*K1*K2**2*K3 - 64*K1*K2**2*K5 - 32*K1*K2*K3*K4 + 7464*K1*K2*K3 + 1208*K1*K3*K4 + 80*K1*K4*K5 - 608*K2**4 - 48*K2**2*K3**2 - 8*K2**2*K4**2 + 1312*K2**2*K4 - 5750*K2**2 + 184*K2*K3*K5 + 8*K2*K4*K6 - 2368*K3**2 - 760*K4**2 - 84*K5**2 - 2*K6**2 + 5806
Genus of based matrix 2
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {2, 5}, {4}, {3}, {1}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {3, 4}, {1, 2}], [{6}, {5}, {4}, {1, 3}, {2}]]
If K is slice False
Contact