| Gauss code |
O1O2O3O4U2O5U1U3O6U4U5U6 |
| R3 orbit |
{'O1O2O3O4U2O5U1U3O6U4U5U6'} |
| R3 orbit length |
1 |
| Gauss code of -K |
O1O2O3O4U5U6U1O5U2U4O6U3 |
| Gauss code of K* |
O1O2O3U4U5U6U1O5U2O4O6U3 |
| Gauss code of -K* |
O1O2O3U1O4O5U2O6U3U4U6U5 |
| Diagrammatic symmetry type |
c |
| Flat genus of the diagram |
3 |
| If K is checkerboard colorable |
False |
| If K is almost classical |
False |
| Based matrix from Gauss code |
[[ 0 -3 -2 0 1 2 2],[ 3 0 0 2 3 3 2],[ 2 0 0 1 2 2 1],[ 0 -2 -1 0 1 2 2],[-1 -3 -2 -1 0 1 2],[-2 -3 -2 -2 -1 0 1],[-2 -2 -1 -2 -2 -1 0]] |
| Primitive based matrix |
[[ 0 2 2 1 0 -2 -3],[-2 0 1 -1 -2 -2 -3],[-2 -1 0 -2 -2 -1 -2],[-1 1 2 0 -1 -2 -3],[ 0 2 2 1 0 -1 -2],[ 2 2 1 2 1 0 0],[ 3 3 2 3 2 0 0]] |
| If based matrix primitive |
True |
| Phi of primitive based matrix |
[-2,-2,-1,0,2,3,-1,1,2,2,3,2,2,1,2,1,2,3,1,2,0] |
| Phi over symmetry |
[-3,-2,0,1,2,2,0,2,3,2,3,1,2,1,2,1,2,2,2,1,-1] |
| Phi of -K |
[-3,-2,0,1,2,2,1,1,1,2,3,1,1,2,3,0,0,0,0,-1,-1] |
| Phi of K* |
[-2,-2,-1,0,2,3,-1,-1,0,3,3,0,0,2,2,0,1,1,1,1,1] |
| Phi of -K* |
[-3,-2,0,1,2,2,0,2,3,2,3,1,2,1,2,1,2,2,2,1,-1] |
| Symmetry type of based matrix |
c |
| u-polynomial |
t^3-t^2-t |
| Normalized Jones-Krushkal polynomial |
17z+35 |
| Enhanced Jones-Krushkal polynomial |
17w^2z+35w |
| Inner characteristic polynomial |
t^6+51t^4+11t^2 |
| Outer characteristic polynomial |
t^7+73t^5+38t^3+4t |
| Flat arrow polynomial |
-10*K1**2 - 2*K1*K2 + K1 + 5*K2 + K3 + 6 |
| 2-strand cable arrow polynomial |
160*K1**4*K2 - 2240*K1**4 + 128*K1**3*K2*K3 - 864*K1**3*K3 - 1856*K1**2*K2**2 + 64*K1**2*K2*K3**2 - 224*K1**2*K2*K4 + 7000*K1**2*K2 - 736*K1**2*K3**2 - 64*K1**2*K4**2 - 5464*K1**2 - 224*K1*K2**2*K3 - 64*K1*K2*K3*K4 + 5192*K1*K2*K3 + 1168*K1*K3*K4 + 80*K1*K4*K5 - 88*K2**4 - 96*K2**2*K3**2 - 8*K2**2*K4**2 + 416*K2**2*K4 - 4022*K2**2 + 96*K2*K3*K5 + 8*K2*K4*K6 - 2016*K3**2 - 498*K4**2 - 40*K5**2 - 2*K6**2 + 4192 |
| Genus of based matrix |
1 |
| Fillings of based matrix |
[[{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}]] |
| If K is slice |
False |