Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.651

Min(phi) over symmetries of the knot is: [-3,-2,0,1,1,3,0,2,1,2,4,1,0,1,2,1,1,2,-1,-1,1]
Flat knots (up to 7 crossings) with same phi are :['6.651']
Arrow polynomial of the knot is: 4*K1**3 - 6*K1**2 - 4*K1*K2 - K1 + 3*K2 + K3 + 4
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.361', '6.460', '6.555', '6.651', '6.753', '6.782', '6.1029', '6.1197', '6.1200', '6.1232', '6.1236', '6.1278', '6.1281', '6.1343', '6.1380', '6.1385', '6.1389', '6.1484', '6.1492', '6.1493', '6.1527', '6.1533', '6.1550', '6.1553', '6.1557', '6.1576', '6.1578', '6.1582', '6.1586', '6.1674', '6.1698', '6.1754', '6.1759', '6.1775', '6.1791', '6.1798', '6.1800', '6.1805', '6.1822', '6.1826', '6.1839', '6.1844', '6.1845']
Outer characteristic polynomial of the knot is: t^7+64t^5+44t^3+4t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.651']
2-strand cable arrow polynomial of the knot is: -256*K1**4*K2**2 + 1312*K1**4*K2 - 2016*K1**4 + 128*K1**3*K2**3*K3 - 128*K1**3*K2**2*K3 + 896*K1**3*K2*K3 + 32*K1**3*K3*K4 - 1024*K1**3*K3 - 320*K1**2*K2**4 + 352*K1**2*K2**3 - 128*K1**2*K2**2*K3**2 + 256*K1**2*K2**2*K4 - 5584*K1**2*K2**2 + 192*K1**2*K2*K3**2 - 320*K1**2*K2*K4 + 8904*K1**2*K2 - 1024*K1**2*K3**2 - 112*K1**2*K4**2 - 6900*K1**2 + 576*K1*K2**3*K3 - 1280*K1*K2**2*K3 - 224*K1*K2**2*K5 + 32*K1*K2*K3**3 - 320*K1*K2*K3*K4 + 8304*K1*K2*K3 + 1424*K1*K3*K4 + 128*K1*K4*K5 - 32*K2**6 + 32*K2**4*K4 - 824*K2**4 - 512*K2**2*K3**2 - 16*K2**2*K4**2 + 1480*K2**2*K4 - 5286*K2**2 + 440*K2*K3*K5 + 8*K2*K4*K6 - 2732*K3**2 - 738*K4**2 - 96*K5**2 - 2*K6**2 + 5376
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.651']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.11427', 'vk6.11722', 'vk6.12741', 'vk6.13084', 'vk6.20334', 'vk6.21676', 'vk6.27637', 'vk6.29182', 'vk6.31178', 'vk6.31519', 'vk6.32346', 'vk6.32763', 'vk6.39068', 'vk6.41327', 'vk6.45824', 'vk6.47495', 'vk6.52192', 'vk6.52449', 'vk6.53023', 'vk6.53339', 'vk6.57193', 'vk6.58408', 'vk6.61806', 'vk6.62932', 'vk6.63762', 'vk6.63872', 'vk6.64190', 'vk6.64376', 'vk6.66808', 'vk6.67677', 'vk6.69447', 'vk6.70170']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U2O5U1U3O6U5U6U4
R3 orbit {'O1O2O3O4U2O5U1U3O6U5U6U4'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U1U5U6O5U2U4O6U3
Gauss code of K* O1O2O3U4U5U6U3O5U1O4O6U2
Gauss code of -K* O1O2O3U2O4O5U3O6U1U4U6U5
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -3 -2 0 3 1 1],[ 3 0 0 2 4 2 1],[ 2 0 0 1 2 1 0],[ 0 -2 -1 0 2 1 1],[-3 -4 -2 -2 0 -1 1],[-1 -2 -1 -1 1 0 1],[-1 -1 0 -1 -1 -1 0]]
Primitive based matrix [[ 0 3 1 1 0 -2 -3],[-3 0 1 -1 -2 -2 -4],[-1 -1 0 -1 -1 0 -1],[-1 1 1 0 -1 -1 -2],[ 0 2 1 1 0 -1 -2],[ 2 2 0 1 1 0 0],[ 3 4 1 2 2 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-3,-1,-1,0,2,3,-1,1,2,2,4,1,1,0,1,1,1,2,1,2,0]
Phi over symmetry [-3,-2,0,1,1,3,0,2,1,2,4,1,0,1,2,1,1,2,-1,-1,1]
Phi of -K [-3,-2,0,1,1,3,1,1,2,3,2,1,2,3,3,0,0,1,-1,1,3]
Phi of K* [-3,-1,-1,0,2,3,1,3,1,3,2,1,0,2,2,0,3,3,1,1,1]
Phi of -K* [-3,-2,0,1,1,3,0,2,1,2,4,1,0,1,2,1,1,2,-1,-1,1]
Symmetry type of based matrix c
u-polynomial t^2-2t
Normalized Jones-Krushkal polynomial 5z^2+26z+33
Enhanced Jones-Krushkal polynomial 5w^3z^2+26w^2z+33w
Inner characteristic polynomial t^6+40t^4+15t^2+1
Outer characteristic polynomial t^7+64t^5+44t^3+4t
Flat arrow polynomial 4*K1**3 - 6*K1**2 - 4*K1*K2 - K1 + 3*K2 + K3 + 4
2-strand cable arrow polynomial -256*K1**4*K2**2 + 1312*K1**4*K2 - 2016*K1**4 + 128*K1**3*K2**3*K3 - 128*K1**3*K2**2*K3 + 896*K1**3*K2*K3 + 32*K1**3*K3*K4 - 1024*K1**3*K3 - 320*K1**2*K2**4 + 352*K1**2*K2**3 - 128*K1**2*K2**2*K3**2 + 256*K1**2*K2**2*K4 - 5584*K1**2*K2**2 + 192*K1**2*K2*K3**2 - 320*K1**2*K2*K4 + 8904*K1**2*K2 - 1024*K1**2*K3**2 - 112*K1**2*K4**2 - 6900*K1**2 + 576*K1*K2**3*K3 - 1280*K1*K2**2*K3 - 224*K1*K2**2*K5 + 32*K1*K2*K3**3 - 320*K1*K2*K3*K4 + 8304*K1*K2*K3 + 1424*K1*K3*K4 + 128*K1*K4*K5 - 32*K2**6 + 32*K2**4*K4 - 824*K2**4 - 512*K2**2*K3**2 - 16*K2**2*K4**2 + 1480*K2**2*K4 - 5286*K2**2 + 440*K2*K3*K5 + 8*K2*K4*K6 - 2732*K3**2 - 738*K4**2 - 96*K5**2 - 2*K6**2 + 5376
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {4, 5}, {2, 3}]]
If K is slice False
Contact