Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.652

Min(phi) over symmetries of the knot is: [-3,-2,1,1,1,2,0,2,2,4,2,1,1,2,1,-1,-1,1,1,1,2]
Flat knots (up to 7 crossings) with same phi are :['6.652']
Arrow polynomial of the knot is: 4*K1**3 - 4*K1**2 - 6*K1*K2 + 2*K2 + 2*K3 + 3
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.552', '6.652', '6.764', '6.776', '6.784', '6.839', '6.903', '6.1010', '6.1166']
Outer characteristic polynomial of the knot is: t^7+64t^5+91t^3+8t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.652']
2-strand cable arrow polynomial of the knot is: -416*K1**4 - 128*K1**3*K3 + 1184*K1**2*K2**3 - 3632*K1**2*K2**2 - 352*K1**2*K2*K4 + 5544*K1**2*K2 - 256*K1**2*K3**2 - 4840*K1**2 + 256*K1*K2**3*K3 - 1248*K1*K2**2*K3 - 32*K1*K2**2*K5 - 64*K1*K2*K3*K4 + 4736*K1*K2*K3 + 1136*K1*K3*K4 + 8*K1*K4*K5 + 8*K1*K5*K6 - 288*K2**6 + 448*K2**4*K4 - 1776*K2**4 - 32*K2**3*K6 - 464*K2**2*K3**2 - 248*K2**2*K4**2 + 1824*K2**2*K4 - 2908*K2**2 - 64*K2*K3**2*K4 + 384*K2*K3*K5 + 144*K2*K4*K6 - 32*K3**4 + 80*K3**2*K6 - 1716*K3**2 - 756*K4**2 - 92*K5**2 - 60*K6**2 + 3650
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.652']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.73762', 'vk6.73763', 'vk6.73803', 'vk6.73805', 'vk6.73900', 'vk6.73902', 'vk6.73939', 'vk6.73940', 'vk6.75747', 'vk6.75749', 'vk6.75904', 'vk6.75905', 'vk6.78701', 'vk6.78702', 'vk6.78759', 'vk6.78761', 'vk6.78900', 'vk6.78902', 'vk6.80324', 'vk6.80326', 'vk6.80360', 'vk6.80361', 'vk6.80448', 'vk6.80449', 'vk6.81719', 'vk6.81721', 'vk6.82493', 'vk6.82496', 'vk6.84459', 'vk6.84463', 'vk6.88344', 'vk6.88352']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U2O5U1U4O6U5U3U6
R3 orbit {'O1O2O3O4U2O5U1U4O6U5U3U6'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U5U2U6O5U1U4O6U3
Gauss code of K* O1O2O3U4U5U2U6O5U1O4O6U3
Gauss code of -K* O1O2O3U1O4O5U3O6U4U2U6U5
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -3 -2 1 1 1 2],[ 3 0 0 4 2 2 2],[ 2 0 0 2 1 1 1],[-1 -4 -2 0 -1 1 2],[-1 -2 -1 1 0 1 1],[-1 -2 -1 -1 -1 0 1],[-2 -2 -1 -2 -1 -1 0]]
Primitive based matrix [[ 0 2 1 1 1 -2 -3],[-2 0 -1 -1 -2 -1 -2],[-1 1 0 1 1 -1 -2],[-1 1 -1 0 -1 -1 -2],[-1 2 -1 1 0 -2 -4],[ 2 1 1 1 2 0 0],[ 3 2 2 2 4 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,-1,-1,2,3,1,1,2,1,2,-1,-1,1,2,1,1,2,2,4,0]
Phi over symmetry [-3,-2,1,1,1,2,0,2,2,4,2,1,1,2,1,-1,-1,1,1,1,2]
Phi of -K [-3,-2,1,1,1,2,1,0,2,2,3,1,2,2,3,-1,1,-1,1,0,0]
Phi of K* [-2,-1,-1,-1,2,3,-1,0,0,3,3,-1,1,1,0,1,2,2,2,2,1]
Phi of -K* [-3,-2,1,1,1,2,0,2,2,4,2,1,1,2,1,-1,-1,1,1,1,2]
Symmetry type of based matrix c
u-polynomial t^3-3t
Normalized Jones-Krushkal polynomial 4z^2+21z+27
Enhanced Jones-Krushkal polynomial -2w^4z^2+6w^3z^2-2w^3z+23w^2z+27w
Inner characteristic polynomial t^6+44t^4+15t^2
Outer characteristic polynomial t^7+64t^5+91t^3+8t
Flat arrow polynomial 4*K1**3 - 4*K1**2 - 6*K1*K2 + 2*K2 + 2*K3 + 3
2-strand cable arrow polynomial -416*K1**4 - 128*K1**3*K3 + 1184*K1**2*K2**3 - 3632*K1**2*K2**2 - 352*K1**2*K2*K4 + 5544*K1**2*K2 - 256*K1**2*K3**2 - 4840*K1**2 + 256*K1*K2**3*K3 - 1248*K1*K2**2*K3 - 32*K1*K2**2*K5 - 64*K1*K2*K3*K4 + 4736*K1*K2*K3 + 1136*K1*K3*K4 + 8*K1*K4*K5 + 8*K1*K5*K6 - 288*K2**6 + 448*K2**4*K4 - 1776*K2**4 - 32*K2**3*K6 - 464*K2**2*K3**2 - 248*K2**2*K4**2 + 1824*K2**2*K4 - 2908*K2**2 - 64*K2*K3**2*K4 + 384*K2*K3*K5 + 144*K2*K4*K6 - 32*K3**4 + 80*K3**2*K6 - 1716*K3**2 - 756*K4**2 - 92*K5**2 - 60*K6**2 + 3650
Genus of based matrix 2
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {4, 5}, {3}, {2}, {1}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {3, 4}, {1, 2}], [{6}, {5}, {4}, {1, 3}, {2}]]
If K is slice False
Contact