Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.656

Min(phi) over symmetries of the knot is: [-3,-2,1,1,1,2,0,1,3,4,2,0,1,2,2,0,0,0,0,1,2]
Flat knots (up to 7 crossings) with same phi are :['6.656']
Arrow polynomial of the knot is: 4*K1**3 - 2*K1*K2 - 2*K1 + 1
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.233', '6.340', '6.382', '6.550', '6.656', '6.663', '6.683', '6.698', '6.739', '6.745', '6.759', '6.765', '6.1357', '6.1358', '6.1370']
Outer characteristic polynomial of the knot is: t^7+64t^5+114t^3+10t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.656']
2-strand cable arrow polynomial of the knot is: -576*K1**2*K2**4 + 1184*K1**2*K2**3 - 5136*K1**2*K2**2 - 32*K1**2*K2*K4 + 4256*K1**2*K2 - 2568*K1**2 + 512*K1*K2**3*K3 - 576*K1*K2**2*K3 + 3680*K1*K2*K3 + 32*K1*K3*K4 - 288*K2**6 + 160*K2**4*K4 - 1504*K2**4 - 112*K2**2*K3**2 - 8*K2**2*K4**2 + 984*K2**2*K4 - 944*K2**2 - 664*K3**2 - 88*K4**2 + 1686
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.656']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.17536', 'vk6.17544', 'vk6.17593', 'vk6.17601', 'vk6.24042', 'vk6.24052', 'vk6.24136', 'vk6.24144', 'vk6.36320', 'vk6.36332', 'vk6.36393', 'vk6.36399', 'vk6.43445', 'vk6.43453', 'vk6.43494', 'vk6.43499', 'vk6.55634', 'vk6.55642', 'vk6.55659', 'vk6.55667', 'vk6.60152', 'vk6.60157', 'vk6.60207', 'vk6.60217', 'vk6.65339', 'vk6.65345', 'vk6.65369', 'vk6.65377', 'vk6.68505', 'vk6.68509', 'vk6.68527', 'vk6.68533']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U2O5U1U5O6U4U3U6
R3 orbit {'O1O2O3O4U2O5U1U5O6U4U3U6'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U5U2U1O5U6U4O6U3
Gauss code of K* O1O2O3U4U5U2U1O5U6O4O6U3
Gauss code of -K* O1O2O3U1O4O5U4O6U3U2U6U5
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -3 -2 1 1 1 2],[ 3 0 0 4 3 1 2],[ 2 0 0 2 1 0 2],[-1 -4 -2 0 0 0 2],[-1 -3 -1 0 0 0 1],[-1 -1 0 0 0 0 0],[-2 -2 -2 -2 -1 0 0]]
Primitive based matrix [[ 0 2 1 1 1 -2 -3],[-2 0 0 -1 -2 -2 -2],[-1 0 0 0 0 0 -1],[-1 1 0 0 0 -1 -3],[-1 2 0 0 0 -2 -4],[ 2 2 0 1 2 0 0],[ 3 2 1 3 4 0 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,-1,-1,2,3,0,1,2,2,2,0,0,0,1,0,1,3,2,4,0]
Phi over symmetry [-3,-2,1,1,1,2,0,1,3,4,2,0,1,2,2,0,0,0,0,1,2]
Phi of -K [-3,-2,1,1,1,2,1,0,1,3,3,1,2,3,2,0,0,-1,0,0,1]
Phi of K* [-2,-1,-1,-1,2,3,-1,0,1,2,3,0,0,1,0,0,2,1,3,3,1]
Phi of -K* [-3,-2,1,1,1,2,0,1,3,4,2,0,1,2,2,0,0,0,0,1,2]
Symmetry type of based matrix c
u-polynomial t^3-3t
Normalized Jones-Krushkal polynomial 2z^2+7z+7
Enhanced Jones-Krushkal polynomial -4w^4z^2+6w^3z^2-12w^3z+19w^2z+7w
Inner characteristic polynomial t^6+44t^4+54t^2
Outer characteristic polynomial t^7+64t^5+114t^3+10t
Flat arrow polynomial 4*K1**3 - 2*K1*K2 - 2*K1 + 1
2-strand cable arrow polynomial -576*K1**2*K2**4 + 1184*K1**2*K2**3 - 5136*K1**2*K2**2 - 32*K1**2*K2*K4 + 4256*K1**2*K2 - 2568*K1**2 + 512*K1*K2**3*K3 - 576*K1*K2**2*K3 + 3680*K1*K2*K3 + 32*K1*K3*K4 - 288*K2**6 + 160*K2**4*K4 - 1504*K2**4 - 112*K2**2*K3**2 - 8*K2**2*K4**2 + 984*K2**2*K4 - 944*K2**2 - 664*K3**2 - 88*K4**2 + 1686
Genus of based matrix 2
Fillings of based matrix [[{1, 6}, {2, 5}, {3, 4}], [{1, 6}, {2, 5}, {4}, {3}], [{1, 6}, {3, 5}, {2, 4}], [{1, 6}, {3, 5}, {4}, {2}], [{1, 6}, {4, 5}, {2, 3}], [{1, 6}, {4, 5}, {3}, {2}], [{1, 6}, {5}, {2, 4}, {3}], [{1, 6}, {5}, {3, 4}, {2}], [{1, 6}, {5}, {4}, {2, 3}], [{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {1, 5}, {4}, {3}], [{2, 6}, {3, 5}, {1, 4}], [{2, 6}, {3, 5}, {4}, {1}], [{2, 6}, {4, 5}, {1, 3}], [{2, 6}, {4, 5}, {3}, {1}], [{2, 6}, {5}, {1, 4}, {3}], [{2, 6}, {5}, {3, 4}, {1}], [{2, 6}, {5}, {4}, {1, 3}], [{2, 6}, {5}, {4}, {3}, {1}], [{3, 6}, {1, 5}, {2, 4}], [{3, 6}, {1, 5}, {4}, {2}], [{3, 6}, {2, 5}, {1, 4}], [{3, 6}, {2, 5}, {4}, {1}], [{3, 6}, {4, 5}, {1, 2}], [{3, 6}, {4, 5}, {2}, {1}], [{3, 6}, {5}, {1, 4}, {2}], [{3, 6}, {5}, {2, 4}, {1}], [{3, 6}, {5}, {4}, {1, 2}], [{4, 6}, {1, 5}, {2, 3}], [{4, 6}, {1, 5}, {3}, {2}], [{4, 6}, {2, 5}, {1, 3}], [{4, 6}, {2, 5}, {3}, {1}], [{4, 6}, {3, 5}, {1, 2}], [{4, 6}, {3, 5}, {2}, {1}], [{4, 6}, {5}, {1, 3}, {2}], [{4, 6}, {5}, {2, 3}, {1}], [{4, 6}, {5}, {3}, {1, 2}], [{5, 6}, {1, 4}, {2, 3}], [{5, 6}, {1, 4}, {3}, {2}], [{5, 6}, {2, 4}, {1, 3}], [{5, 6}, {2, 4}, {3}, {1}], [{5, 6}, {3, 4}, {1, 2}], [{5, 6}, {3, 4}, {2}, {1}], [{5, 6}, {4}, {1, 3}, {2}], [{5, 6}, {4}, {2, 3}, {1}], [{5, 6}, {4}, {3}, {1, 2}], [{6}, {1, 5}, {2, 4}, {3}], [{6}, {1, 5}, {3, 4}, {2}], [{6}, {1, 5}, {4}, {2, 3}], [{6}, {1, 5}, {4}, {3}, {2}], [{6}, {2, 5}, {1, 4}, {3}], [{6}, {2, 5}, {3, 4}, {1}], [{6}, {2, 5}, {4}, {1, 3}], [{6}, {3, 5}, {1, 4}, {2}], [{6}, {3, 5}, {2, 4}, {1}], [{6}, {3, 5}, {4}, {1, 2}], [{6}, {4, 5}, {1, 3}, {2}], [{6}, {4, 5}, {2, 3}, {1}], [{6}, {4, 5}, {3}, {1, 2}], [{6}, {5}, {1, 4}, {2, 3}], [{6}, {5}, {2, 4}, {1, 3}], [{6}, {5}, {3, 4}, {1, 2}]]
If K is slice False
Contact