Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.661

Min(phi) over symmetries of the knot is: [-2,-1,-1,1,1,2,-1,0,1,1,4,1,0,1,1,0,1,2,1,0,0]
Flat knots (up to 7 crossings) with same phi are :['6.661']
Arrow polynomial of the knot is: 4*K1**3 - 4*K1**2 - 4*K1*K2 - K1 + 2*K2 + K3 + 3
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.209', '6.231', '6.391', '6.419', '6.600', '6.661', '6.744', '6.812', '6.826', '6.1114', '6.1125', '6.1202', '6.1275', '6.1292', '6.1305', '6.1322', '6.1365', '6.1481', '6.1483', '6.1497', '6.1543', '6.1549', '6.1572', '6.1577', '6.1580', '6.1594', '6.1641', '6.1658', '6.1683', '6.1753', '6.1830', '6.1907', '6.1928']
Outer characteristic polynomial of the knot is: t^7+44t^5+55t^3+11t
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.661']
2-strand cable arrow polynomial of the knot is: -448*K1**4*K2**2 + 1056*K1**4*K2 - 1264*K1**4 - 256*K1**3*K2**2*K3 + 352*K1**3*K2*K3 - 672*K1**3*K3 - 256*K1**2*K2**4 + 3392*K1**2*K2**3 + 288*K1**2*K2**2*K4 - 9024*K1**2*K2**2 - 992*K1**2*K2*K4 + 8520*K1**2*K2 - 16*K1**2*K3**2 - 80*K1**2*K4**2 - 5560*K1**2 + 1152*K1*K2**3*K3 - 2144*K1*K2**2*K3 - 288*K1*K2**2*K5 - 128*K1*K2*K3*K4 + 7600*K1*K2*K3 + 752*K1*K3*K4 + 96*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 3136*K2**4 - 32*K2**3*K6 - 448*K2**2*K3**2 - 16*K2**2*K4**2 + 2712*K2**2*K4 - 3014*K2**2 + 152*K2*K3*K5 + 16*K2*K4*K6 - 1748*K3**2 - 636*K4**2 - 36*K5**2 - 2*K6**2 + 4074
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.661']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.4198', 'vk6.4277', 'vk6.5452', 'vk6.5564', 'vk6.7559', 'vk6.7644', 'vk6.9063', 'vk6.9142', 'vk6.18242', 'vk6.18577', 'vk6.24714', 'vk6.25127', 'vk6.36837', 'vk6.37300', 'vk6.44073', 'vk6.44412', 'vk6.48510', 'vk6.48589', 'vk6.49202', 'vk6.49308', 'vk6.50295', 'vk6.50369', 'vk6.51060', 'vk6.51091', 'vk6.56037', 'vk6.56311', 'vk6.60586', 'vk6.60925', 'vk6.65699', 'vk6.65993', 'vk6.68744', 'vk6.68952']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U2O5U3U4O6U5U1U6
R3 orbit {'O1O2O3O4U2O5U3U4O6U5U1U6'}
R3 orbit length 1
Gauss code of -K O1O2O3O4U5U4U6O5U1U2O6U3
Gauss code of K* O1O2O3U2U4U5U6O4U1O5O6U3
Gauss code of -K* O1O2O3U1O4O5U3O6U4U5U6U2
Diagrammatic symmetry type c
Flat genus of the diagram 3
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 -2 -1 1 1 2],[ 1 0 -2 -1 1 2 2],[ 2 2 0 1 2 2 0],[ 1 1 -1 0 1 2 1],[-1 -1 -2 -1 0 1 1],[-1 -2 -2 -2 -1 0 1],[-2 -2 0 -1 -1 -1 0]]
Primitive based matrix [[ 0 2 1 1 -1 -1 -2],[-2 0 -1 -1 -1 -2 0],[-1 1 0 1 -1 -1 -2],[-1 1 -1 0 -2 -2 -2],[ 1 1 1 2 0 1 -1],[ 1 2 1 2 -1 0 -2],[ 2 0 2 2 1 2 0]]
If based matrix primitive True
Phi of primitive based matrix [-2,-1,-1,1,1,2,1,1,1,2,0,-1,1,1,2,2,2,2,-1,1,2]
Phi over symmetry [-2,-1,-1,1,1,2,-1,0,1,1,4,1,0,1,1,0,1,2,1,0,0]
Phi of -K [-2,-1,-1,1,1,2,-1,0,1,1,4,1,0,1,1,0,1,2,1,0,0]
Phi of K* [-2,-1,-1,1,1,2,0,0,1,2,4,-1,0,0,1,1,1,1,-1,-1,0]
Phi of -K* [-2,-1,-1,1,1,2,1,2,2,2,0,1,1,2,1,1,2,2,1,1,1]
Symmetry type of based matrix c
u-polynomial 0
Normalized Jones-Krushkal polynomial 8z^2+29z+27
Enhanced Jones-Krushkal polynomial 8w^3z^2+29w^2z+27w
Inner characteristic polynomial t^6+32t^4+15t^2+1
Outer characteristic polynomial t^7+44t^5+55t^3+11t
Flat arrow polynomial 4*K1**3 - 4*K1**2 - 4*K1*K2 - K1 + 2*K2 + K3 + 3
2-strand cable arrow polynomial -448*K1**4*K2**2 + 1056*K1**4*K2 - 1264*K1**4 - 256*K1**3*K2**2*K3 + 352*K1**3*K2*K3 - 672*K1**3*K3 - 256*K1**2*K2**4 + 3392*K1**2*K2**3 + 288*K1**2*K2**2*K4 - 9024*K1**2*K2**2 - 992*K1**2*K2*K4 + 8520*K1**2*K2 - 16*K1**2*K3**2 - 80*K1**2*K4**2 - 5560*K1**2 + 1152*K1*K2**3*K3 - 2144*K1*K2**2*K3 - 288*K1*K2**2*K5 - 128*K1*K2*K3*K4 + 7600*K1*K2*K3 + 752*K1*K3*K4 + 96*K1*K4*K5 - 32*K2**6 + 64*K2**4*K4 - 3136*K2**4 - 32*K2**3*K6 - 448*K2**2*K3**2 - 16*K2**2*K4**2 + 2712*K2**2*K4 - 3014*K2**2 + 152*K2*K3*K5 + 16*K2*K4*K6 - 1748*K3**2 - 636*K4**2 - 36*K5**2 - 2*K6**2 + 4074
Genus of based matrix 1
Fillings of based matrix [[{2, 6}, {1, 5}, {3, 4}], [{2, 6}, {3, 5}, {1, 4}], [{3, 6}, {2, 5}, {1, 4}], [{5, 6}, {1, 4}, {2, 3}]]
If K is slice False
Contact