Table of flat knot invariants
Invariant Table Check a Knot Higher Crossing Crossref Virtual Knots Please cite FlatKnotInfo
Glossary Reference List

Flat knot 6.671

Min(phi) over symmetries of the knot is: [-3,-1,0,1,1,2,1,1,3,3,2,0,1,2,2,0,1,1,0,1,2]
Flat knots (up to 7 crossings) with same phi are :['6.671']
Arrow polynomial of the knot is: -6*K1**2 - 2*K1*K2 + K1 + 3*K2 + K3 + 4
Flat knots (up to 7 crossings) with same arrow polynomial are :['6.323', '6.380', '6.444', '6.472', '6.523', '6.579', '6.592', '6.595', '6.609', '6.614', '6.620', '6.644', '6.648', '6.669', '6.671', '6.681', '6.693', '6.724', '6.725', '6.757', '6.766', '6.785', '6.786', '6.797', '6.798', '6.816', '6.833', '6.972', '6.978', '6.1056', '6.1064', '6.1066', '6.1087', '6.1094', '6.1273', '6.1277', '6.1282', '6.1295', '6.1300', '6.1313', '6.1344', '6.1353', '6.1354']
Outer characteristic polynomial of the knot is: t^7+56t^5+76t^3
Flat knots (up to 7 crossings) with same outer characteristic polynomial are :['6.671']
2-strand cable arrow polynomial of the knot is: -64*K1**4*K2**2 + 160*K1**4*K2 - 592*K1**4 + 96*K1**3*K2*K3 - 576*K1**2*K2**2 + 976*K1**2*K2 - 112*K1**2*K3**2 - 372*K1**2 + 568*K1*K2*K3 + 96*K1*K3*K4 + 8*K1*K4*K5 - 88*K2**4 - 48*K2**2*K3**2 - 8*K2**2*K4**2 + 64*K2**2*K4 - 374*K2**2 + 40*K2*K3*K5 + 8*K2*K4*K6 - 168*K3**2 - 42*K4**2 - 12*K5**2 - 2*K6**2 + 440
Flat knots (up to 6 crossings) with same 2-strand cable arrow polynomial are :['6.671']
Virtual knots (up to 6 crossings) projecting to this knot are :'vk6.13930', 'vk6.13950', 'vk6.14025', 'vk6.14044', 'vk6.14997', 'vk6.15017', 'vk6.15118', 'vk6.15137', 'vk6.16540', 'vk6.16633', 'vk6.17455', 'vk6.17477', 'vk6.17489', 'vk6.23470', 'vk6.23809', 'vk6.23964', 'vk6.23976', 'vk6.23997', 'vk6.24009', 'vk6.24120', 'vk6.25998', 'vk6.26382', 'vk6.33748', 'vk6.33828', 'vk6.35052', 'vk6.35615', 'vk6.36273', 'vk6.36371', 'vk6.37605', 'vk6.37692', 'vk6.38882', 'vk6.41082', 'vk6.43418', 'vk6.44587', 'vk6.45647', 'vk6.53882', 'vk6.54428', 'vk6.54786', 'vk6.54874', 'vk6.55602', 'vk6.56435', 'vk6.58230', 'vk6.59976', 'vk6.60095', 'vk6.60107', 'vk6.60180', 'vk6.62793', 'vk6.65032']
The R3 orbit of minmal crossing diagrams contains:
The diagrammatic symmetry type of this knot is c.
The reverse -K is
The mirror image K* is
The reversed mirror image -K* is
The fillings (up to the first 10) associated to the algebraic genus:
Or click here to check the fillings

invariant value
Gauss code O1O2O3O4U2O5U6U3O6U4U1U5
R3 orbit {'O1O2O3U1O4O5U6U3O6U2U4U5', 'O1O2O3O4U2O5U4U6U3O6U1U5', 'O1O2O3O4U2O5U6U3O6U4U1U5'}
R3 orbit length 3
Gauss code of -K O1O2O3O4U5U4U1O6U2U6O5U3
Gauss code of K* O1O2O3U2U4U5U1O4U3O6O5U6
Gauss code of -K* O1O2O3U4O5O4U1O6U3U5U6U2
Diagrammatic symmetry type c
Flat genus of the diagram 2
If K is checkerboard colorable False
If K is almost classical False
Based matrix from Gauss code [[ 0 -1 -2 0 1 3 -1],[ 1 0 -2 1 2 3 0],[ 2 2 0 1 2 2 1],[ 0 -1 -1 0 0 1 0],[-1 -2 -2 0 0 1 -1],[-3 -3 -2 -1 -1 0 -3],[ 1 0 -1 0 1 3 0]]
Primitive based matrix [[ 0 3 1 0 -1 -1 -2],[-3 0 -1 -1 -3 -3 -2],[-1 1 0 0 -1 -2 -2],[ 0 1 0 0 0 -1 -1],[ 1 3 1 0 0 0 -1],[ 1 3 2 1 0 0 -2],[ 2 2 2 1 1 2 0]]
If based matrix primitive True
Phi of primitive based matrix [-3,-1,0,1,1,2,1,1,3,3,2,0,1,2,2,0,1,1,0,1,2]
Phi over symmetry [-3,-1,0,1,1,2,1,1,3,3,2,0,1,2,2,0,1,1,0,1,2]
Phi of -K [-2,-1,-1,0,1,3,-1,0,1,1,3,0,0,0,1,1,1,1,1,2,1]
Phi of K* [-3,-1,0,1,1,2,1,2,1,1,3,1,0,1,1,0,1,1,0,-1,0]
Phi of -K* [-2,-1,-1,0,1,3,1,2,1,2,2,0,0,1,3,1,2,3,0,1,1]
Symmetry type of based matrix c
u-polynomial -t^3+t^2+t
Normalized Jones-Krushkal polynomial 7z+15
Enhanced Jones-Krushkal polynomial 7w^2z+15w
Inner characteristic polynomial t^6+40t^4+47t^2
Outer characteristic polynomial t^7+56t^5+76t^3
Flat arrow polynomial -6*K1**2 - 2*K1*K2 + K1 + 3*K2 + K3 + 4
2-strand cable arrow polynomial -64*K1**4*K2**2 + 160*K1**4*K2 - 592*K1**4 + 96*K1**3*K2*K3 - 576*K1**2*K2**2 + 976*K1**2*K2 - 112*K1**2*K3**2 - 372*K1**2 + 568*K1*K2*K3 + 96*K1*K3*K4 + 8*K1*K4*K5 - 88*K2**4 - 48*K2**2*K3**2 - 8*K2**2*K4**2 + 64*K2**2*K4 - 374*K2**2 + 40*K2*K3*K5 + 8*K2*K4*K6 - 168*K3**2 - 42*K4**2 - 12*K5**2 - 2*K6**2 + 440
Genus of based matrix 1
Fillings of based matrix [[{1, 6}, {4, 5}, {2, 3}], [{2, 6}, {3, 5}, {1, 4}], [{3, 6}, {2, 5}, {1, 4}], [{5, 6}, {1, 4}, {2, 3}]]
If K is slice False
Contact