| Gauss code | O1O2O3O4U2O5U6U4O6U1U5U3 | 
| R3 orbit | {'O1O2O3O4U2O5U6U4O6U1U5U3'} | 
| R3 orbit length | 1 | 
| Gauss code of -K | O1O2O3O4U2U5U4O6U1U6O5U3 | 
| Gauss code of K* | O1O2O3U1U4U3U5O4U2O6O5U6 | 
| Gauss code of -K* | O1O2O3U4O5O4U2O6U5U1U6U3 | 
| Diagrammatic symmetry type | c | 
| Flat genus of the diagram | 3 | 
| If K is checkerboard colorable | False | 
| If K is almost classical | False | 
| Based matrix from Gauss code | [[ 0 -2 -2 2 1 2 -1],[ 2 0 -1 3 2 2 1],[ 2 1 0 2 1 1 1],[-2 -3 -2 0 0 1 -3],[-1 -2 -1 0 0 0 -1],[-2 -2 -1 -1 0 0 -2],[ 1 -1 -1 3 1 2 0]] | 
| Primitive based matrix | [[ 0 2 2 1 -1 -2 -2],[-2 0 1 0 -3 -2 -3],[-2 -1 0 0 -2 -1 -2],[-1 0 0 0 -1 -1 -2],[ 1 3 2 1 0 -1 -1],[ 2 2 1 1 1 0 1],[ 2 3 2 2 1 -1 0]] | 
| If based matrix primitive | True | 
| Phi of primitive based matrix | [-2,-2,-1,1,2,2,-1,0,3,2,3,0,2,1,2,1,1,2,1,1,-1] | 
| Phi over symmetry | [-2,-2,-1,1,2,2,-1,0,2,2,3,0,1,1,2,1,0,1,1,1,-1] | 
| Phi of -K | [-2,-2,-1,1,2,2,-1,0,2,2,3,0,1,1,2,1,0,1,1,1,-1] | 
| Phi of K* | [-2,-2,-1,1,2,2,-1,1,1,2,3,1,0,1,2,1,1,2,0,0,-1] | 
| Phi of -K* | [-2,-2,-1,1,2,2,-1,1,2,2,3,1,1,1,2,1,2,3,0,0,-1] | 
| Symmetry type of based matrix | c | 
| u-polynomial | 0 | 
| Normalized Jones-Krushkal polynomial | 4z^2+21z+27 | 
| Enhanced Jones-Krushkal polynomial | 4w^3z^2+21w^2z+27w | 
| Inner characteristic polynomial | t^6+41t^4+28t^2+1 | 
| Outer characteristic polynomial | t^7+59t^5+46t^3+5t | 
| Flat arrow polynomial | 12*K1**3 - 8*K1**2 - 8*K1*K2 - 5*K1 + 4*K2 + K3 + 5 | 
| 2-strand cable arrow polynomial | -192*K1**4*K2**2 + 512*K1**4*K2 - 928*K1**4 + 96*K1**3*K2*K3 + 32*K1**3*K3*K4 + 992*K1**2*K2**3 - 5104*K1**2*K2**2 - 256*K1**2*K2*K4 + 5968*K1**2*K2 - 160*K1**2*K3**2 - 112*K1**2*K4**2 - 4016*K1**2 + 416*K1*K2**3*K3 - 1056*K1*K2**2*K3 - 160*K1*K2**2*K5 - 96*K1*K2*K3*K4 + 4600*K1*K2*K3 - 32*K1*K2*K4*K5 + 672*K1*K3*K4 + 152*K1*K4*K5 + 8*K1*K5*K6 - 96*K2**6 + 192*K2**4*K4 - 1616*K2**4 - 32*K2**3*K6 - 336*K2**2*K3**2 - 96*K2**2*K4**2 + 1696*K2**2*K4 - 2654*K2**2 + 272*K2*K3*K5 + 72*K2*K4*K6 - 1184*K3**2 - 572*K4**2 - 88*K5**2 - 18*K6**2 + 3122 | 
| Genus of based matrix | 0 | 
| Fillings of based matrix | [[{4, 6}, {2, 5}, {1, 3}]] | 
| If K is slice | True |