| Gauss code |
O1O2O3O4U2O5U6U4O6U3U1U5 |
| R3 orbit |
{'O1O2O3O4U2O5U6U4O6U3U1U5'} |
| R3 orbit length |
1 |
| Gauss code of -K |
O1O2O3O4U5U4U2O6U1U6O5U3 |
| Gauss code of K* |
O1O2O3U2U4U1U5O4U3O6O5U6 |
| Gauss code of -K* |
O1O2O3U4O5O4U1O6U5U3U6U2 |
| Diagrammatic symmetry type |
c |
| Flat genus of the diagram |
3 |
| If K is checkerboard colorable |
False |
| If K is almost classical |
False |
| Based matrix from Gauss code |
[[ 0 -1 -2 0 1 3 -1],[ 1 0 -2 1 2 3 0],[ 2 2 0 2 1 2 1],[ 0 -1 -2 0 1 2 -1],[-1 -2 -1 -1 0 0 -1],[-3 -3 -2 -2 0 0 -3],[ 1 0 -1 1 1 3 0]] |
| Primitive based matrix |
[[ 0 3 1 0 -1 -1 -2],[-3 0 0 -2 -3 -3 -2],[-1 0 0 -1 -1 -2 -1],[ 0 2 1 0 -1 -1 -2],[ 1 3 1 1 0 0 -1],[ 1 3 2 1 0 0 -2],[ 2 2 1 2 1 2 0]] |
| If based matrix primitive |
True |
| Phi of primitive based matrix |
[-3,-1,0,1,1,2,0,2,3,3,2,1,1,2,1,1,1,2,0,1,2] |
| Phi over symmetry |
[-3,-1,0,1,1,2,0,2,3,3,2,1,1,2,1,1,1,2,0,1,2] |
| Phi of -K |
[-2,-1,-1,0,1,3,-1,0,0,2,3,0,0,0,1,0,1,1,0,1,2] |
| Phi of K* |
[-3,-1,0,1,1,2,2,1,1,1,3,0,0,1,2,0,0,0,0,-1,0] |
| Phi of -K* |
[-2,-1,-1,0,1,3,1,2,2,1,2,0,1,1,3,1,2,3,1,2,0] |
| Symmetry type of based matrix |
c |
| u-polynomial |
-t^3+t^2+t |
| Normalized Jones-Krushkal polynomial |
2z^2+19z+31 |
| Enhanced Jones-Krushkal polynomial |
2w^3z^2+19w^2z+31w |
| Inner characteristic polynomial |
t^6+44t^4+29t^2+1 |
| Outer characteristic polynomial |
t^7+60t^5+54t^3+5t |
| Flat arrow polynomial |
-10*K1**2 - 2*K1*K2 + K1 + 5*K2 + K3 + 6 |
| 2-strand cable arrow polynomial |
-192*K1**6 - 192*K1**4*K2**2 + 1408*K1**4*K2 - 3568*K1**4 + 288*K1**3*K2*K3 - 768*K1**3*K3 + 608*K1**2*K2**3 - 4192*K1**2*K2**2 - 256*K1**2*K2*K4 + 6944*K1**2*K2 - 432*K1**2*K3**2 - 32*K1**2*K3*K5 - 2792*K1**2 - 480*K1*K2**2*K3 - 32*K1*K2*K3*K4 + 4112*K1*K2*K3 + 568*K1*K3*K4 + 32*K1*K4*K5 - 648*K2**4 - 112*K2**2*K3**2 - 8*K2**2*K4**2 + 664*K2**2*K4 - 2486*K2**2 + 160*K2*K3*K5 + 8*K2*K4*K6 - 1020*K3**2 - 254*K4**2 - 52*K5**2 - 2*K6**2 + 2724 |
| Genus of based matrix |
1 |
| Fillings of based matrix |
[[{3, 6}, {1, 5}, {2, 4}], [{5, 6}, {2, 4}, {1, 3}]] |
| If K is slice |
False |